Our customers often come to us with use cases that require upserts or data deduplication. After digging into the use cases and the problems the customer is attempting to resolve, we find better approaches that are well-supported by Druid. Sometimes, we find that the use case really does require these capabilities, and the use of an external function is required. That said, in this blog, I’d like to tackle what can be done with Druid for upserts and data deduplication.
“Upsert” means “update if found, insert otherwise”. On the other hand, “deduplication” is the process of ensuring that only a single row exists for a particular key. These two functions are similar, in that they both rely on a key to identify a row. If users are generally upserting data into a table, that would also ensure deduplicated data. The main idea being that upserting means the user wants the latest version of the data whereas deduplication means the user wants any version of the data since they are all duplicates. So from here on, this blog will only be concerned with upserts, and there are several options for doing them with Druid, depending on the use case.
1. Upserts Using Batch Ingestion
One possibility is to rewrite Druid time chunks (ie Druid time partition) with the latest data for that time chunk. This is relatively expensive at upsert time since you would need to reindex all the data in that time chunk, even if a single row changes. It also means that you would need to have the updated version of all the data in that time chunk handy for reingestion in a single job, which is often not the case. That said, this does provide the best query performance since the data will be already in its optimal form for querying.
Time partitions with one time partition being completely replaced by another
This is useful in situations where the upsert volume is not high (meaning the data is not changing often), and it’s not that important to make the upsert visible quickly. A useful strategy for a production deployment would be to batch upserts until there’s a sufficient number of them to be worth an ingestion job. Most use cases involving this solution would be situations where Druid is used as a materialized view over data that resides in another system such as in S3 or in a data warehouse and kept up to date. Then the latest data for any particular time chunk is always readily available for reloading into Druid.
2. Upserts Using Query-time Aggregation
Sometimes users just want to read the latest value of some field y for some key field x. If you append all updates (instead of upserting them) during ingestion, then you can do a query like SELECT x, LATEST_BY(y, update_timestamp) from tbl GROUP BY x to get the latest values. Note that you’ll need an update timestamp to be added so Druid can track the latest version. However, if you use this as a subquery and do further processing on top of it (for example SELECT w, SUM(latest_y) from (SELECT w, x, LATEST_BY(y, update_timestamp) as latest_y GROUP BY x) GROUP by w), and there are a lot of x in the subquery, this query could be expensive – though enhancements to Druid that make this sort of query faster are on the way (see this blog article). This pattern is useful in situations where there aren’t that many distinct x or where the performance requirement for these kinds of queries is not very demanding.
The table below is an example, where x is user_id and y is points. To get the latest points at each hour for each user_id, execute SELECT FLOOR(__time to HOUR)as hour_time, user_id, LATEST_BY(update_timestamp, points) from tbl GROUP BY 1, 2.
__time
update_timestamp
user_id
points
1:00pm
1:00pm
funny_bunny1
10
1:00pm
1:05pm
funny_bunny1
20
2:00pm
2:00pm
funny_bunny1
5
2:00pm
2:00pm
creepy_monkey1
30
2:00pm
2:05pm
creepy_monkey1
25
3:00pm
3:00pm
funny_bunny1
10
The result of that SELECT statement looks like:
hour_time
user_id
points
1:00pm
funny_bunny1
20
2:00pm
funny_bunny1
5
2:00pm
creepy_monkey1
25
3:00pm
funny_bunny1
10
A mitigation for the cost of these kinds of queries is to set up a periodic batch ingestion job that reindexes modified data into a new datasource for direct querying without grouping. Another mitigation is to do ingestion-time aggregation, and to use that LATEST_BY aggregation at ingestion time, appending the upserts through streaming ingestion into a rolled up datasource. Because appending into a time chunk adds new segments and does not perfectly roll up data, so rows may be partial rather than complete rollups, and you may have multiple of these partially rolled up rows, you would still need to use the GROUP BY query for correct querying of that data source. But if you set up autocompaction right, you will be able to significantly reduce the number of stale rows and improve your performance.
3. Upserts Using Deltas
This is similar to the previous method, but rather than appending the new value and then using LATEST as the aggregator, you would use the aggregator you usually use. This allows you to possibly avoid a level of aggregation and grouping in your queries since you would issue the same queries as usual. The example is a datasource with a measure column y that’s usually aggregated by SUM. Say that the old value of y for some x was 3 and you want it to be 2. Then you’d insert a y=-1 for that x, and that would allow you to have the correct value of y for any queries that sum y grouped by x. This could offer a significant performance advantage but may be less flexible since now the aggregation has to always be a SUM. In other cases, the updates to the data may already be deltas to the original, and so the data engineering required to append the updates would be simple. Another simplification here is that the update timestamp is no longer needed since all the data is used. Just as before, the same mitigations as the previous case apply to improve performance with autocompaction and rollup at ingestion time.
Below is an example table that would provide the same results as before with a different query: SELECT FLOOR(__time to HOUR) as hour_time, user_id, SUM(points) from tbl GROUP BY 1, 2.
__time
user_id
points
1:00pm
funny_bunny1
10
1:00pm
funny_bunny1
10
2:00pm
funny_bunny1
5
2:00pm
creepy_monkey1
30
2:00pm
creepy_monkey1
-5
3:00pm
funny_bunny1
10
A Note on Deduplication
In the last two upsert processes described above, we alway needed some way to identify a time of update. For deduplication, the time of update is not necessary since all versions of a row are the same. We also would likely not want to use the LATEST aggregator for grouping, since ANY is good enough. Do you have a use case for upserts or deduplication? Do one of these three models work for you, or are you doing something else? Please visit the Druid Forum and let us know!
Other blogs you might find interesting
No records found...
Jun 01, 2023
Introducing Schema Auto-Discovery in Apache Druid
In this blog article I’ll unpack schema auto-discovery, a new feature now available in Druid 26.0, that enables Druid to automatically discover data fields and data types and update tables to match changing...
Apache Druid® 26.0, an open-source distributed database for real-time analytics, has seen significant improvements with 411 new commits, a 40% increase from version 25.0. The expanded contributor base of 60...
Should You Build or Buy Security Analytics for SecOps?
When should you build—or buy—a security analytics platform for your environment? Here are some common considerations—and how Apache Druid is the ideal foundation for any in-house security solution.
Druid now has a new function, Unnest. Unnest explodes an array into individual elements. This blog contains design methodology and examples for this new Unnest function both from native and SQL binding perspectives.
What’s new in Imply Polaris – Our Real-Time Analytics DBaaS
Every week we add new features and capabilities to Imply Polaris. This month, we’ve expanded security capabilities, added new query functionality, and made it easier to monitor your service with your preferred...
How to Build a Sentiment Analysis Application with ChatGPT and Druid
Leveraging ChatGPT for sentiment analysis, when combined with Apache Druid, offers results from large data volumes. This integration is easily achievable, revealing valuable insights and trends for businesses...
In this blog, we will compare Snowflake and Druid. It is important to note that reporting data warehouses and real-time analytics databases are different domains. Choosing the right tool for your specific requirements...
Learn how to achieve sub-second responses with Apache Druid
Learn how to achieve sub-second responses with Apache Druid. This article is an in-depth look at how Druid resolves queries and describes data modeling techniques that improve performance.
Apache Druid uses load rules to manage the ageing of segments from one historical tier to another and finally to purge old segments from the cluster. In this article, we’ll show what happens when you make...
Real-Time Analytics: Building Blocks and Architecture
This blog identifies the key technical considerations for real-time analytics. It answers what is the right data architecture and why. It spotlights the technologies used at Confluent, Reddit, Target and 1000s...
What’s new in Imply Polaris – Our Real-Time Analytics DBaaS
This blog explains some of the new features, functionality and connectivity added to Imply Polaris over the last two months. We've expanded ingestion capabilities, simplified operations and increased reliability...
Wow, that was easy – Up and running with Apache Druid
The objective of this blog is to provide a step-by-step guide on setting up Druid locally, including the use of SQL ingestion for importing data and executing analytical queries.
Tales at Scale Podcast Kicks off with the Apache Druid Origin Story
Tales at Scale cracks open the world of analytics projects and shares stories from developers and engineers who are building analytics applications or working within the real-time data space. One of the key...
Real-time Analytics Database uses partitioning and pruning to achieve its legendary performance
Apache Druid uses partitioning (splitting data) and pruning (selecting subset of data) to achieve its legendary performance. Learn how to use the CLUSTERED BY clause during ingestion for performance and high...
Easily embed analytics into your own apps with Imply’s DBaaS
This blog explains how developers can leverage Imply Polaris to embed robust visualization options directly into their own applications without them having to build a UI. This is super important because consuming...
Building an Event Analytics Pipeline with Confluent Cloud and Imply’s real time DBaaS, Polaris
Learn how to set up a pipeline that generates a simulated clickstream event stream and sends it to Confluent Cloud, processes the raw clickstream data using managed ksqlDB in Confluent Cloud, delivers the processed...
We are excited to announce the availability of Imply Polaris in Europe, specifically in AWS eu-central-1 region based in Frankfurt. Since its launch in March 2022, Imply Polaris, the fully managed Database-as-a-Service...
This is a what's new to Imply in Dec 2022. We’ve added two new features to Imply Polaris to make it easier for your end users to take advantage of real-time insights.
Combating financial fraud and money laundering at scale with Apache Druid
Learn how Apache Druid enables financial services firms and FinTech companies to get immediate insights from petabytes-plus data volumes for anti-fraud and anti-money laundering compliance.
Imply Pivot delivers the final mile for modern analytics applications
This blog is focused on how Imply Pivot delivers the final mile for building an anlaytics app. It showcases two customer examples - Twitch and ironsource.
For decades, analytics has been defined by the standard reporting and BI workflow, supported by the data warehouse. Now, 1000s of companies are realizing an expansion of analytics beyond reporting, which requires...
Apache Druid is at the heart of Imply. We’re an open source business, and that’s why we’re committed to making Druid the best open source database for modern analytics applications
Tales at Scale Podcast: Who Really Needs Real-Time Data?
Gwen Shapira, co-founder and CPO of Nile joins us to help define real-time data, discuss who needs it (and who probably doesn't) and how to not build yourself into a corner with your architecture. When you're...
When it comes to modern data analytics applications, speed is of the utmost importance. In this blog we discuss two approximation algorithms which can be used to greatly enhance speed with only a slight reduction...
The next chapter for Imply Polaris: celebrating 250+ accounts, continued innovation
Today we announced the next iteration of Imply Polaris, the fully managed Database-as-a-Service that helps you build modern analytics applications faster, cheaper, and with less effort. Since its launch in...
We obviously talk a lot about #ApacheDruid on here. But what are folks actually building with Druid? What is a modern analytics application, exactly? Let's find out
Elasticity is important, but beware the database that can only save you money when your application is not in use. The best solution will have excellent price-performance under all conditions.
Druid 0.23 – Features And Capabilities For Advanced Scenarios
Many of Druid’s improvements focus on building a solid foundation, including making the system more stable, easier to use, faster to scale, and better integrated with the rest of the data ecosystem. But for...
Apache Druid 0.23.0 contains over 450 updates, including new features, major performance enhancements, bug fixes, and major documentation improvements.
Imply Polaris is a fully managed database-as-a-service for building realtime analytics applications. John is the tech lead for the Polaris UI, known internally as the Unified App. It began with a profound question:...
There is a new category within data analytics emerging which is not centered in the world of reports and dashboards (the purview of data analysts and data scientists), but instead centered in the world of applications...
We are in the early stages of a stream revolution, as developers build modern transactional and analytic applications that use real-time data continuously delivered.
Developers and architects must look beyond query performance to understand the operational realities of growing and managing a high performance database and if it will consume their valuable time.
Building high performance logging analytics with Polaris and Logstash
When you think of querying with Apache Druid, you probably imagine queries over massive data sets that run in less than a second. This blog is about some of the things we did as a team to discover the user...
Horizontal scaling is the key to performance at scale, which is why every database claims this. You should investigate, though, to see how much effort it takes, especially compared to Apache Druid.
When you think of querying with Apache Druid, you probably imagine queries over massive data sets that run in less than a second. This blog is about some of the things we did as a team to discover the user...
Building Analytics for External Users is a Whole Different Animal
Analytics aren’t just for internal stakeholders anymore. If you’re building an analytics application for customers, then you’re probably wondering…what’s the right database backend?
After over 30 years of working with data analytics, we’ve been witness (and sometimes participant) to three major shifts in how we find insights from data - and now we’re looking at the fourth.
Every year industry pundits predict data and analytics becoming more valuable the following year. But this doesn’t take a crystal ball to predict. There’s instead something much more interesting happening...
Today, I'm prepared to share our progress on this effort and some of our plans for the future. But before diving further into that, let's take a closer look at how Druid's core query engine executes queries,...
Product Update: SSO, Cluster level authorization, OAuth 2.0 and more security features
When you think of querying with Apache Druid, you probably imagine queries over massive data sets that run in less than a second. This blog is about some of the things we did as a team to discover the user...
When you think of querying with Apache Druid, you probably imagine queries over massive data sets that run in less than a second. This blog is about some of the things we did as a team to discover the user...
Druid Nails Cost Efficiency Challenge Against ClickHouse & Rockset
To make a long story short, we were pleased to confirm that Druid is 2 times faster than ClickHouse and 8 times faster than Rockset with fewer hardware resources!.
Unveiling Project Shapeshift Nov. 9th at Druid Summit 2021
There is a new category within data analytics emerging which is not centered in the world of reports and dashboards (the purview of data analysts and data scientists), but instead centered in the world of applications...
How we made long-running queries work in Apache Druid
When you think of querying with Apache Druid, you probably imagine queries over massive data sets that run in less than a second. This blog is about some of the things we did as a team to discover the user...
Uneven traffic flow in streaming pipelines is a common problem. Providing the right level of resources to keep up with spikes in demand is a requirement in order to deliver timely analytics.
Community Discoveries: multi-value dimensions in Apache Druid
Hellmar Becker is an Imply solutions engineer based in Germany, where he has been delving into the nooks-and-crannies of multi-valued dimension support in Druid. In this interview, Hellmar explains why...
Community Spotlight: Apache Pulsar and Apache Druid get close…
The community team at Imply spoke with an Apache Pulsar community member, Giannis Polyzos, about how collaboration between open source communities generates great things, and more specifically, about how...
Meet the team: Abhishek Agarwal, engineering lead in India
Abhishek is Imply’s first engineer in India. We spoke to him about setting up our operations in Bangalore and asked what kind of local talent the company is looking for.
Jihoon Son is a software engineer at Imply who works on Apache Druid®. He explains what drew him to Imply five years ago and why he’s even more inspired by the company today.
Community Spotlight: Sparking that connection with Apache Druid
It’s been nearly 10 years now since Druid was open sourced “to help other organizations solve their real-time data analysis and processing needs”. This has happened not because of one person or one...
Community Spotlight: Augmented analytics on business metrics by Cuebook with Apache Druid®
Cuebook is putting you, decision-maker, back in the driving seat, powered by Apache Druid®. In this interview with their founder and CEO, we learn their reason for being, their open source Cuelake tooling,...
Empowering all types of users to analyze data incredibly quickly from wherever it sits provides huge value to organizations. Citizen data scientists and decision scientists are able to make empirically-backed,...
Our vision at Imply has always been to create a new category for data analytics, analytics-in-motion, and enable organizations to unlock workflows they’ve never been able to do before. With the most recent...
Community Spotlight: Avesta powers next-generation applications with Apache Druid
When considering various real-time analytics solutions, Apache Druid quickly became the clear choice: Avesta uses only open-source products and libraries. And today, they’re using Druid as a central component...
The traditional BI workflow starts with a strategic question. Such a question is not too time-sensitive—days or weeks is okay—and the question is pretty complex to answer.
How we enabled the “Go Fast” button on TopN queries: Hint: we used vectorized virtual columns (which is new in Apache Druid 0.20.0)
Apache Druid is a fast, modern analytics database designed for workflows where fast, ad-hoc analytics, instant data visibility, or supporting high concurrency is important. Multiple factors contribute to...
How Sift is accurately identifying anomalies in real time by using Imply Druid
As the leader in Digital Trust & Safety and a pioneer in using machine learning to fight fraud, Sift regularly deploys new machine learning models into production. Sift’s customers use the scores generated...
Making the impossible, possible: A GameAnalytics case study
We’ve had the pleasure of speaking with Ioana Hreninciuc, CEO of GameAnalytics, to learn just how they use Imply to make their next-generation data stack possible.
Make your real-time dashboards blazing fast with per-segment caching
Imagine a scenario where Druid is collecting metrics about a huge microservices application —there’s a continuous stream of metrics coming in about the different services from this application.
Community Spotlight: smart advertising from Sage+Archer + Apache Druid
Out-of-home advertising has changed. Gone are static, uncompromisingly homogenous posters, replaced instead with bright and fluid installations. Installations that make smart decisions about what and when...
Some time ago, Dana Assa and I wrote a detailed blog post about Data retention and deletion in Apache Druid. Our intention was to help Druid database users and provide guidance on how to control the TTL...
Hawk is the first independent European platform to offer a transparent and technological advertising experience across all screens: Desktop, Mobile, CTV, DOOH & Digital Audio.
If you thought you had perfect rollups before, you might have been wrong!
In Apache Druid, you can roll up duplicate rows into a single row to optimize storage and improve query performance. Rollup pre-aggregates data at ingestion time, which reduces the amount of data the query...
Imply’s real-time analytics maturity model to create better customer experiences
Imply’s real-time Druid database today powers the analytics needs of over 100 customers across industries such as Banking, Retail, Manufacturing, and Technology. We have observed that the majority of prospects...
What I wish I knew about Imply when I was developing in-house analytics
Like a lot of engineers at Imply, I got my start here after having worked on an analytics solution for a previous employer. In my case, it was a large non-tech company going through a digital transformation.
Imply allows Kueez's data analysts, content editors, and growth teams to optimize their campaigns in real-time. With open-source Druid, they struggled to keep their system up and running, their queries were...