Apache Kafka, Flink, and Druid: Open Source Essentials for Real-Time Data Applications

Sep 15, 2023
David Wang

It’s not easy for data teams working with batch workflows to keep up with today’s real-time requirements. Why? Because the batch workflow – from data delivery and processing to analytics – involves a lot of waiting. 

There’s waiting for data to be sent to an ETL tool, waiting for data to be processed in bulk, waiting for data to be loaded in a data warehouse, and even waiting for the queries to finish running.

But there’s a solution for this from the open source world. Apache Kafka, Flink, and Druid, when used together, create a real-time data architecture that eliminates all these wait states. In this blog post, we’ll explore how the combination of these tools enables a wide range of real-time applications.

Architecting real-time applications

Kafka-Flink-Druid creates a data architecture that can seamlessly deliver the data freshness, scale, and reliability across the entire data workflow from event to analytics to application.

Open-source data architecture for real-time applications 

Companies like Lyft, Pinterest, Reddit, and Paytm use the three together because they are each built from complementary stream-native technologies that together handle the full gamut of real-time use cases. 

This architecture makes it simple to build real-time applications such as observability, IoT/telemetry analytics, security detection/diagnostics, customer-facing insights, and personalized recommendations.

Let’s take a closer look at each and how they can be used together. 

Streaming pipeline: Apache Kafka

Apache Kafka has emerged over the past several years as the de facto standard for streaming data. Prior to it, RabbitMQ, ActiveMQ and other message queuing systems were used to provide various messaging patterns to distribute data from producers to consumers, but with scale limitations. 

Fast forward to today, Kafka has become ubiquitous, with at least 80% of the Fortune 100 using it. And it’s because Kafka’s architecture extends well beyond simple messaging.  The versatility of its architecture makes Kafka very well suited for streaming at massive ‘internet’ scale with fault tolerance and data consistency to support mission-critical applications – and its wide range of connectors via Kafka Connect integrate with any data sources.

Apache Kafka as the streaming platform for real-time data

Stream processing: Apache Flink

With Kafka delivering real-time data, the right consumers are needed to take advantage of its speed and scale in real-time. One of the popular choices is Apache Flink.

Why Flink? For starters, Flink’s a high throughput, unified batch and stream processing engine, with its unique strengths lying in its ability to process continuous data streams at scale. Flink is a natural fit as a stream processor for Kafka as it integrates seamlessly and supports exactly-once semantics, guaranteeing that each event is processed exactly once, even with system failures. 

Simply put, connect to a Kafka topic, define the query logic, and then emit the result continuously – ie. ‘set it and forget it’. This makes Flink pretty versatile for use cases where immediate processing of streams and reliability are essential.  

Here are some of Flink’s common use cases:

Enrichment and transformation

If a stream needs to undergo any data manipulation (e.g. modifying, enhancing, or restructuring data) before it can be used, Flink is an ideal engine to make changes or enhancements to those streams as it can keep the data fresh with continuous processing.

For example, let’s say we have an IoT/telemetry use case for processing temperature sensors in a smart building.  And each event coming into Kafka has the following JSON structure: { “sensor_id”: “SensorA”, “temperature”: 22.5, “timestamp”: “2023-07-10T10:00:00” }.  

If each sensor ID needs to be mapped with a location and the temperature needs to be in Fahrenheit, Flink can update the JSON structure to { “sensor_id”: “SensorA”, “location”: “Room 101”, “temperature_Fahreinheit”: 73.4, “timestamp”: “2023-07-10T10:00:00” }, emitting it directly to an application or sending it back to Kafka.

Illustrative example of Flink’s data processing as a structured table for clarity

An advantage for Flink here is its speed at scale to handle massive Kafka streams in real-time. Also, enrichment/transformation is often a stateless process where each data record can be modified without needing to maintain persistent state, making it minimal effort and highly performant too.

Continuous monitoring and alerting

The combination of Flink’s real-time continuous processing and fault tolerance also makes it an ideal solution for real-time detection and response across various critical applications. 

When the sensitivity to detection is very high – think sub-second – and the sampling rate is also high, Flink’s continuous processing is well suited as a data serving layer for monitoring conditions and triggering alerts and action accordingly.  

An advantage for Flink with alerts is that it can support both stateless and stateful alerting.  Threshold or event triggers like “notify the fire department when temp reaches X” are straightforward, but not always intelligent enough. So, in use cases where the alert needs to be driven by complex patterns that require remembering state – or even aggregating metrics (e.g. sum, avg, min, max, count, etc) – within a continuous stream of data, Flink can monitor and update state to identify deviations and anomalies.

Something to consider is that using Flink for monitoring and alerting involves continuous CPU to evaluate conditions against thresholds and patterns, which is different from say a database that only utilizes CPU during query execution. So it’s a good idea to understand if continuous is required.

Real-time analytics: Apache Druid

Apache Druid rounds out the data architecture, joining Kafka and Flink as the consumer of streams for powering real-time analytics. While it is a database for analytics, its design center and use is much different than that of other databases and data warehouses.  

For starters, Druid is like a brother to Kafka and Flink.  It too is stream-native. In fact, there is no connector between Kafka and Druid as it connects directly into Kafka topics and it supports exactly-once semantics. Druid is also designed for rapid ingestion of streaming data at scale and immediate querying of events, in-memory, on arrival. 

How Apache Druid natively integrates with Apache Kafka for stream ingestion

On the query side of things, Druid is a high performance, real-time analytics database that delivers sub-second queries at scale and under load. If the use case is performance-sensitive and requires handling TBs to PBs of data (eg. aggregations, filters, GroupBys, complex joins, etc) with high query volume, Druid is an ideal database as it consistently delivers lightning fast queries and can easily scale from a single laptop to a cluster of 1000s of nodes.

This is why Druid is known as a real-time analytics database: it’s for when real-time data meets real-time queries.  Here’s how Druid complements Flink:

Highly interactive queries

At its core, engineering teams use Druid to power analytics applications. These are data-intensive applications that include both internal (ie. operational) and external (ie. customer-facing) use cases across observability, security, product analytics, IoT/telemetry, manufacturing operations, etc.  The applications powered with Druid generally have these characteristics:  

  • Performant at scale: Applications that need sub-second read performance on analytics-rich queries against large data sets without pre-computation. Druid is highly performant even if the application’s users are arbitrarily grouping, filtering, and slicing/dicing through lots of random queries at TB-PB scale.
  • High query volume:  Applications that demand high QPS for analytical queries. An example here would be for any external-facing application – ie. data product – where sub-second SLAs are needed for workloads producing 100s to 1000s of (different) concurrent queries.
  • Time-series data: Applications that present insights on data with a time dimension (a strength of Druid’s but not a limitation). Druid can process time-series data at scale very quickly because of its time partitioning and data format. This makes time-based WHERE filters incredibly fast.

These applications either have a very interactive data visualization / synthesized result-set UI with lots of flexibility in changing the queries on the fly (because Druid is that fast) or in many cases they are leveraging Druid’s API for query speed at scale to power a decisioning workflow. 

Here’s an example of an analytics application powered by Apache Druid. 

Credit: Confluent – Confluent Health+ dashboard

Confluent, the original creators of Apache Kafka, provide analytics to their customers via Confluent Health+.  This application above is highly interactive and packed with insights on their customers’ Confluent environment. Under the cover, events are streaming into Kafka and Druid at 5 million events per second with the application serving 350 QPS.

Real-time with historical data

While the example above shows Druid powering a pretty interactive analytics application, you might be wondering “what’s love streaming got to do with it?”  It’s a good question as Druid is not limited to streaming data. It’s very capable of ingesting large batch files as well.

But what makes Druid relevant in the real-time data architecture is that it can provide the interactive data experience on real-time data combined with historical data for even richer context. 

While Flink is great at answering “what is happening now” (ie. emit the current status of a Flink job), Druid is in a technical position to answer “what is happening now, how does that compare to before, and what factors/conditions impacted that outcome”. These questions together are quite powerful as they, for example, can eliminate false positives, help detect new trends, and lead to more insightful real-time decisions. 

Answering “how does this compare to before” requires historical context – a day, a week, a year or other time horizons – for correlation. And “what factors/conditions impacted the outcome” require mining through a full data set. As Druid is a real-time analytics database, it ingests streams to give the real-time insights but it also persists data so it can query historical data and all the other dimensions for ad-hoc exploration too.   

How Druid’s query engine handles both real-time and historical data

For example, let’s say we are building an application that monitors security logins for suspicious behavior. We might want to set a threshold in a 5 minute window: ie. update and emit the state of login attempts. That’s easy for Flink.  But with Druid, current login attempts can also be correlated with historical data to identify similar login spikes in the past that didn’t have security breaches.  So the historical context here helps determine whether a present spike is indicative of a problem or just normal behavior. 

So when you have an application that needs to present a lot of analytics – e.g. current status, variety of aggregations, grouping, time windows, complex joins, etc – on rapidly changing events but also provides historical context and explore that data set via a highly flexible API, that’s Druid’s sweet spot.

Flink and Druid Checklist

Flink and Druid are both built for streaming data. While they share some high-level similarities – both in-memory, both can scale, both can parallelize – their architectures are really built for entirely different use cases as we saw above. 

Here’s a simple workload-based decision checklist: 

Do you need to transform or join data in real-time on streaming data?  
Look at Flink as this is its “bread and butter” as it’s designed for real-time data processing.

Do you need to support many different queries concurrently? 
Look at Druid as it supports high QPS analytics without needing to manage queries/jobs.

Do the metrics need to be updated or aggregated continuously? 
Look at Flink for this because it supports stateful complex event processing.

Are the analytics more complex and is historical data needed for comparison?  
Look at Druid as it can easily and quickly query real-time data with historical data.

Are you powering a user-facing application or data visualization? 
Look at Flink for enrichment then send that data to Druid as the data serving layer.

In most cases, the answer isn’t Druid or Flink, but rather Druid and Flink. Each provides technical characteristics that make them together well suited to support a wide range of real-time applications.


Businesses are increasingly demanding real-time from data teams. And that means the data workflow needs to be reconsidered end-to-end. That’s why many companies are turning to Kafka-Flink-Druid as the de facto open-source data architecture for building real-time applications.

To try out the Kafka-Flink-Druid architecture you can download the open source projects here – Kafka, Flink, Druid – or simply get a free trial of the Confluent Cloud and Imply Polaris , cloud services for Kafka-Flink (Confluent) and Druid (Imply).

Other blogs you might find interesting

No records found...
Feb 21, 2024

What’s new in Imply Polaris – January 2024

At Imply, we're excited to share the latest enhancements in Imply Polaris, our real-time analytics Database-as-a-Service (DBaaS) powered by Apache Druid®. Our commitment to refining your experience with Polaris...

Learn More
Feb 21, 2024

Introducing Apache Druid 29.0

Apache Druid® is an open-source distributed database designed for real-time analytics at scale. We are excited to announce the release of Apache Druid 29.0. This release contains over 350 commits & 67 contributors.

Learn More
Feb 14, 2024

Apache Druid vs. ClickHouse

If your project needs a real-time analytics database that provides subsecond performance at scale you should consider both Apache Druid and ClickHouse. Find out how to make an informed choice.

Learn More
Jan 23, 2024

Enhancing Data Security with Role-Based Access Control in Druid and Imply

Managing user access to relevant data is a crucial aspect of any data platform. In a typical Role Based Access Control (RBAC) setup, users are assigned roles that determine their access to relevant data. We...

Learn More
Jan 16, 2024

Comparing Data Formats for Analytics: Parquet, Iceberg, and Druid Segments

In this blog, I will give you a detailed overview of each choice. We will cover key features, benefits, defining characteristics, and provide a table comparing the file formats. Dive in and explore the characteristics...

Learn More
Jan 12, 2024

Scheduling batch ingestion with Apache Airflow

This guide is your map to navigating the confluence of Airflow and Druid for smooth batch ingestion. We'll get you started by showing you how to setup Airflow and the Druid Provider and use it to ingest some...

Learn More
Dec 29, 2023

A Buyer’s Guide to OLAP Tools

How do OLAP databases work—and which one is right for you? Read this blog post to learn more about which OLAP solutions are best for different use cases.

Learn More
Dec 26, 2023

What is IoT Analytics?

Because it deals with fast-moving, real-time data, IoT analytics is uniquely challenging. Learn how to overcome these challenges and how to extract (and act on) valuable insights from IoT data.

Learn More
Dec 19, 2023

OLTP and OLAP Databases: How They Differ and Where to Use Them

Learn about the differences between analytical and transactional databases—their strengths and weaknesses, what they’re used for, and which option to choose for your own use case.

Learn More
Dec 15, 2023

Query from deep storage: Introducing a new performance tier in Apache Druid

Now, Druid offers a simpler, cost-effective solution with its new feature, Query from Deep Storage. This feature enables you to query Druid’s deep storage layer directly without having to preload all of your...

Learn More
Dec 15, 2023

How KakaoBank Uses Imply for Financial Analysis

As a mobile-first digital platform, KakaoBank accumulates a substantial amount of data. Therefore, analysts need a solution that can effectively analyze and pre-process large quantities of data, visualize the...

Learn More
Dec 14, 2023

Joins, Multi-Stage Queries, and More: Relive the Excitement of Druid Summit 2023

Druid Summit kicked off its fourth year as a global gathering of minds passionate about real-time analytics and the power of Apache Druid. This year’s event revealed a common theme: the growing significance...

Learn More
Dec 13, 2023

An Introduction to Online Analytical Processing (OLAP)

Online analytical processing (OLAP) analyzes data at scale—and provides actionable insights to organizations. Learn about how OLAP works, what a data cube is, and which OLAP product to use.

Learn More
Dec 12, 2023

Real-Time Data: What it is, Why it Matters, and More

Real-time data travels directly from the source to end users, so that it can be processed and acted on instantly. Learn all about the challenges, benefits, and best practices for real-time data.

Learn More
Dec 08, 2023

Druid vs Pinot: Choosing the best database for Real-Time Analytics

Do you want fast analytics, with subsecond queries, high concurrency, and combination of streams and batch data? If so, you want real-time analytics, and you probably want to consider the two Apache Software...

Learn More
Dec 07, 2023

What’s new in Imply Polaris – October and November 2023

At Imply, our commitment to continually improving your experience with Imply Polaris—our real-time analytics Database-as-a-Service (DBaaS) powered by Apache Druid®—is evident in recent developments. Over...

Learn More
Nov 15, 2023

Introducing Apache Druid 28.0.0

Apache Druid 28.0, an open-source database for real-time analytics, introduces Async queries, UNION ALL support, SQL WINDOW functions, enhanced ingestion features, including multi-Kafka topic support, and...

Learn More
Oct 18, 2023

Migrating Data From S3 To Apache Druid

This blog covers the rationale, advantages, and step-by-step process for data transfer from AWS s3 to Apache Druid for faster real-time analytics and querying.

Learn More
Oct 12, 2023

What’s new in Imply Polaris, our real-time analytics DBaaS  – September 2023

Every week, we add new features and capabilities to Imply Polaris. Throughout September, we've focused on enhancing your experience as you explore trials, navigate data integration, oversee data management,...

Learn More
Sep 27, 2023

Introducing incremental encoding for Apache Druid dictionary encoded columns

In this blog post we deep dive on a recent engineering effort: incremental encoding of STRING columns. In preliminary testing, it has shown to be quite promising at significantly reducing the size of segment...

Learn More
Sep 21, 2023

Migrate Analytics Data from MongoDB to Apache Druid

This blog presents a concise guide on migrating data from MongoDB to Druid. It includes Python scripts to extract data from MongoDB, save it as CSV, and then ingest it into Druid. It also touches on maintaining...

Learn More
Sep 21, 2023

How Druid Facilitates Real-Time Analytics for Mass Transit

Mass transit plays a key role in reimagining life in a warmer, more densely populated world. Learn how Apache Druid helps power data and analytics for mass transit.

Learn More
Sep 19, 2023

Migrate Analytics Data from Snowflake to Apache Druid

This blog outlines the steps needed to migrate data from Snowflake to Apache Druid, a platform designed for high-performance analytical queries. The article covers the migration process, including Python scripts...

Learn More
Sep 11, 2023

Visualizing Data in Apache Druid with the Plotly Python Library

In today's data-driven world, making sense of vast datasets can be a daunting task. Visualizing this data can transform complicated patterns into actionable insights. This blog delves into the utilization of...

Learn More
Sep 05, 2023

Bringing Real-Time Data to Solar Power with Apache Druid

In a rapidly warming world, solar power is critical for decarbonization. Learn how Apache Druid empowers a solar equipment manufacturer to provide real-time data to users, from utility plant operators to homeowners

Learn More
Sep 05, 2023

When to Build (Versus Buy) an Observability Application

Observability is the key to software reliability. Here’s how to decide whether to build or buy your own solution—and why Apache Druid is a popular database for real-time observability

Learn More
Aug 29, 2023

How Innowatts Simplifies Utility Management with Apache Druid

Data is a key driver of progress and innovation in all aspects of our society and economy. By bringing digital data to physical hardware, the Internet of Things (IoT) bridges the gap between the online and...

Learn More
Aug 14, 2023

Three Ways to Use Apache Druid for Machine Learning Workflows

An excellent addition to any machine learning environment, Apache Druid® can facilitate analytics, streamline monitoring, and add real-time data to operations and training

Learn More
Aug 11, 2023

Introducing Apache Druid 27.0.0

Apache Druid® is an open-source distributed database designed for real-time analytics at scale. Apache Druid 27.0 contains over 350 commits & 46 contributors. This release's focus is on stability and scaling...

Learn More
Aug 10, 2023

Unleashing Real-Time Analytics in APJ: Introducing Imply Polaris on AWS AP-South-1

Imply, the company founded by the original creators of Apache Druid, has exciting news for developers in India seeking to build real-time analytics applications. Introducing Imply Polaris, a powerful database-as-a-Service...

Learn More
Aug 03, 2023

Embedding Visualizations using React and Express

In this guide, we will walk you through creating a very simple web app that shows a different embedded chart for each user selected from a drop-down. While this example is simple it highlights the possibilities...

Learn More
Jul 25, 2023

Apache Druid: Making 1000+ QPS for Analytics Look Easy

This 2-part blog post explores key technical considerations to support high QPS for analytics and the strengths of Apache Druid

Learn More
Jul 25, 2023

Things to Consider When Scaling Analytics for High QPS

This 2-part blog post explores key technical considerations to support high QPS for analytics and the strengths of Apache Druid

Learn More
Jul 20, 2023

Automate Streaming Data Ingestion with Kafka and Druid

In this blog post, we explore the integration of Kafka and Druid for data stream management and analysis, emphasizing automatic topic detection and ingestion. We delve into the creation of 'Ingestion Spec',...

Learn More
Jul 12, 2023

Schema Auto-Discovery with Apache Druid

This guide explores configuring Apache Druid to receive Kafka streaming messages. To demonstrate Druid's game-changing automatic schema discovery. Using a real-world scenario where data changes are handled...

Learn More
Jul 11, 2023

What’s new in Imply Polaris – Q2 2023

Imply Polaris, our ever-evolving Database-as-a-Service, recently focused on global expansion, enhanced security, and improved data handling and visualization. This fully managed cloud service, based on Apache...

Learn More
Jun 06, 2023

Introducing hands-on developer tutorials for Apache Druid

The objective of this blog is to introduce the new set of interactive tutorials focused on the Druid API fundamentals. These tutorials are available as Jupyter Notebooks and can be downloaded as a Docker container.

Learn More
Jun 01, 2023

Introducing Schema Auto-Discovery in Apache Druid

In this blog article I’ll unpack schema auto-discovery, a new feature now available in Druid 26.0, that enables Druid to automatically discover data fields and data types and update tables to match changing...

Learn More
May 30, 2023

Exploring Unnest in Druid

Druid now has a new function, Unnest. Unnest explodes an array into individual elements. This blog contains design methodology and examples for this new Unnest function both from native and SQL binding perspectives.

Learn More
May 28, 2023

What’s new in Imply Polaris – Our Real-Time Analytics DBaaS

Every week we add new features and capabilities to Imply Polaris. This month, we’ve expanded security capabilities, added new query functionality, and made it easier to monitor your service with your preferred...

Learn More
May 24, 2023

Introducing Apache Druid 26.0

Apache Druid® 26.0, an open-source distributed database for real-time analytics, has seen significant improvements with 411 new commits, a 40% increase from version 25.0. The expanded contributor base of 60...

Learn More
May 22, 2023

ACID and Apache Druid

ACID and Druid, an interesting dive into some of the Druid capabilities in the light of ACID compliance

Learn More
May 21, 2023

How to Build a Sentiment Analysis Application with ChatGPT and Druid

Leveraging ChatGPT for sentiment analysis, when combined with Apache Druid, offers results from large data volumes. This integration is easily achievable, revealing valuable insights and trends for businesses...

Learn More
May 21, 2023

Snowflake and Apache Druid

In this blog, we will compare Snowflake and Druid. It is important to note that reporting data warehouses and real-time analytics databases are different domains. Choosing the right tool for your specific requirements...

Learn More
May 20, 2023

Learn how to achieve sub-second responses with Apache Druid

Learn how to achieve sub-second responses with Apache Druid. This article is an in-depth look at how Druid resolves queries and describes data modeling techniques that improve performance.

Learn More
May 19, 2023

Apache Druid – Recovering Dropped Segments

Apache Druid uses load rules to manage the ageing of segments from one historical tier to another and finally to purge old segments from the cluster. In this article, we’ll show what happens when you make...

Learn More
May 18, 2023

Real-Time Analytics: Building Blocks and Architecture

This blog identifies the key technical considerations for real-time analytics. It answers what is the right data architecture and why. It spotlights the technologies used at Confluent, Reddit, Target and 1000s...

Learn More
May 17, 2023

Transactions Come and Go, but Events are Forever

For decades, analytics has focused on Transactions. While Transactions are still important, the future of analytics is understanding Events.

Learn More
May 16, 2023

What’s new in Imply Polaris – Our Real-Time Analytics DBaaS

This blog explains some of the new features, functionality and connectivity added to Imply Polaris over the last two months. We've expanded ingestion capabilities, simplified operations and increased reliability...

Learn More
May 15, 2023

Elasticsearch and Druid

This blog will help you understand what Elasticsearch and Druid do well and will help you decide whether you need one or both to reach your goals

Learn More
May 14, 2023

Wow, that was easy – Up and running with Apache Druid

The objective of this blog is to provide a step-by-step guide on setting up Druid locally, including the use of SQL ingestion for importing data and executing analytical queries.

Learn More
May 13, 2023

Top 7 Questions about Kafka and Druid

Read on to learn more about common questions and answers about using Kafka with Druid.

Learn More
May 12, 2023

Tales at Scale Podcast Kicks off with the Apache Druid Origin Story

Tales at Scale cracks open the world of analytics projects and shares stories from developers and engineers who are building analytics applications or working within the real-time data space. One of the key...

Learn More
May 11, 2023

Real-time Analytics Database uses partitioning and pruning to achieve its legendary performance

Apache Druid uses partitioning (splitting data) and pruning (selecting subset of data) to achieve its legendary performance. Learn how to use the CLUSTERED BY clause during ingestion for performance and high...

Learn More
May 10, 2023

Easily embed analytics into your own apps with Imply’s DBaaS

This blog explains how developers can leverage Imply Polaris to embed robust visualization options directly into their own applications without them having to build a UI. This is super important because consuming...

Learn More
May 09, 2023

Building an Event Analytics Pipeline with Confluent Cloud and Imply’s real time DBaaS, Polaris

Learn how to set up a pipeline that generates a simulated clickstream event stream and sends it to Confluent Cloud, processes the raw clickstream data using managed ksqlDB in Confluent Cloud, delivers the processed...

Learn More
May 08, 2023

Real time DBaaS comes to Europe

We are excited to announce the availability of Imply Polaris in Europe, specifically in AWS eu-central-1 region based in Frankfurt. Since its launch in March 2022, Imply Polaris, the fully managed Database-as-a-Service...

Learn More
May 07, 2023

Stream big, think bigger—Analyze streaming data at scale in 2023

Imply is predicting the next "big thing" in 2023 will be analyzing streaming data in real time (and Druid is built for just that!)

Learn More
May 07, 2023

Should You Build or Buy Security Analytics for SecOps?

When should you build—or buy—a security analytics platform for your environment? Here are some common considerations—and how Apache Druid is the ideal foundation for any in-house security solution.

Learn More
May 05, 2023

Introducing Apache Druid 25.0

Apache Druid 25.0 contains over 293 updates from over 56 contributors.

Learn More
May 03, 2023

Druid and SQL syntax

This is a technical blog, which summarises the process of extending the Druid's SQL grammar for ingestion and delves into the nitty gritty of Calcite.

Learn More
May 02, 2023

Native support for semi-structured data in Apache Druid

Describes a new feature- ingest complex data as is into Druid- massive improvement in developer productivity

Learn More
May 01, 2023

Real-Time Analytics with Imply Polaris: From Setup to Visualization

Imply Polaris offers reduced operational overhead and elastic scaling for efficient real-time analytics that helps you unlock your data's potential.

Learn More
May 01, 2023

Datanami Award

Apache Druid won Datanami's 2022 Readers’ and Editors’ Choice Awards for Reader's Choice "Best Data and AI Product or Technology: Analytics Database".

Learn More
Apr 30, 2023

Alerting and Security Features in Polaris

Describes new features - alerts and some security features- and how Imply customers can leverage it

Learn More
Apr 29, 2023

Ingestion from Amazon Kinesis and S3 into Imply Polaris

Imply Polaris now supports data ingestion from Amazon Kinesis and Amazon S3

Learn More
Apr 27, 2023

Getting the Most Out of your Data

Ingesting data from one table to another is easy and fast in Imply Polaris!

Learn More
Apr 26, 2023

Combating financial fraud and money laundering at scale with Apache Druid

Learn how Apache Druid enables financial services firms and FinTech companies to get immediate insights from petabytes-plus data volumes for anti-fraud and anti-money laundering compliance.

Learn More
Apr 26, 2023

What’s new in Imply – December 2022

This is a what's new to Imply in Dec 2022. We’ve added two new features to Imply Polaris to make it easier for your end users to take advantage of real-time insights.

Learn More
Apr 25, 2023

What’s New in Imply Polaris – November 2022

This blog provides an overview for the new features, functionality, and connectivity to Imply Polaris for November 2022.

Learn More
Apr 24, 2023

Imply Pivot delivers the final mile for modern analytics applications

This blog is focused on how Imply Pivot delivers the final mile for building an anlaytics app. It showcases two customer examples - Twitch and ironsource.

Learn More
Apr 23, 2023

Why Analytics Need More than a Data Warehouse

For decades, analytics has been defined by the standard reporting and BI workflow, supported by the data warehouse. Now, 1000s of companies are realizing an expansion of analytics beyond reporting, which requires...

Learn More
Apr 21, 2023

Why Open Source Matters for Databases

Apache Druid is at the heart of Imply. We’re an open source business, and that’s why we’re committed to making Druid the best open source database for modern analytics applications

Learn More
Apr 20, 2023

Ingestion from Confluent Cloud and Kafka in Polaris

How to ingest data into Imply Polaris from Confluent Cloud and from Apache Kafka

Learn More
Apr 18, 2023

What Makes a Database Built for Streaming Data?

For an analytics app to handle real-time, streaming sources, it must be built for streaming data. Druid has 3 essential features for stream data.

Learn More
Oct 12, 2022

SQL-based Transformations and JSON Columns in Imply Polaris

You can easily do data transformations and manage JSON data with Imply Polaris, both using SQL.

Learn More
Oct 06, 2022

Approximate Distinct Counts in Imply Polaris

When it comes to modern data analytics applications, speed is of the utmost importance. In this blog we discuss two approximation algorithms which can be used to greatly enhance speed with only a slight reduction...

Learn More
Sep 20, 2022

The next chapter for Imply Polaris: celebrating 250+ accounts, continued innovation

Today we announced the next iteration of Imply Polaris, the fully managed Database-as-a-Service that helps you build modern analytics applications faster, cheaper, and with less effort. Since its launch in...

Learn More
Sep 20, 2022

Introducing Imply’s Total Value Guarantee for Apache Druid

Apache Druid 24.0 contains 450 updates and new features, major performance enhancements, bug fixes, and major documentation improvements

Learn More
Sep 16, 2022

Introducing Apache Druid 24.0

Apache Druid 24.0 contains 450 updates and new features, major performance enhancements, bug fixes, and major documentation improvements

Learn More
Aug 16, 2022

Using Imply Pivot with Druid to Deduplicate Timeseries Data

Imply Pivot offers multi step aggregations, which is valuable for timeseries data where measures are not evenly distributed in time.

Learn More
Jul 21, 2022

A Look Under the Surface at Polaris Security

We have taken a security-first approach in building the easiest real-time database for modern analytics applications.

Learn More
Jul 14, 2022

Upserts and Data Deduplication with Druid

A look at what can be done with Druid for upserts and data deduplication.

Learn More
Jul 01, 2022

What Developers Can Build with Apache Druid

We obviously talk a lot about #ApacheDruid on here. But what are folks actually building with Druid? What is a modern analytics application, exactly? Let's find out

Learn More
Jun 29, 2022

When Streaming Analytics… Isn’t

Nearly all databases are designed for batch processing, which leaves three options for stream analytics.

Learn More
Jun 29, 2022

Apache Druid vs. Snowflake

Elasticity is important, but beware the database that can only save you money when your application is not in use. The best solution will have excellent price-performance under all conditions.

Learn More
Jun 22, 2022

Druid 0.23 – Features And Capabilities For Advanced Scenarios

Many of Druid’s improvements focus on building a solid foundation, including making the system more stable, easier to use, faster to scale, and better integrated with the rest of the data ecosystem. But for...

Learn More
Jun 22, 2022

Introducing Apache Druid 0.23

Apache Druid 0.23.0 contains over 450 updates, including new features, major performance enhancements, bug fixes, and major documentation improvements.

Learn More
Jun 20, 2022

An Opinionated Guide to Component APIs

We have collected a number of guidelines for React component APIs that make components more predictable in terms of behavior and performance.

Learn More
Jun 10, 2022

Druid Architecture & Concepts

In a world full of databases, learn how Apache Druid makes real-time analytics apps a reality in this Whitepaper from Imply

Learn More
May 25, 2022

3 decisions that shaped the Polaris UI

Imply Polaris is a fully managed database-as-a-service for building realtime analytics applications. John is the tech lead for the Polaris UI, known internally as the Unified App. It began with a profound question:...

Learn More
May 19, 2022

How Imply Polaris takes a security-first approach

A primer for developers on security tools and controls available in Imply Polaris

Learn More
May 17, 2022

Imply Raises $100MM in Series D funding

There is a new category within data analytics emerging which is not centered in the world of reports and dashboards (the purview of data analysts and data scientists), but instead centered in the world of applications...

Learn More
May 11, 2022

Imply Named “Cool Database Vendor” by CRN

There can’t be one database good at everything. When it comes to real-time analytics, you need a database built for it.

Learn More
May 11, 2022

Living the Stream

We are in the early stages of a stream revolution, as developers build modern transactional and analytic applications that use real-time data continuously delivered.

Learn More
May 02, 2022

Migrating Data from ClickHouse to Imply Polaris

In this blog, we’ll review the simple steps to export data from ClickHouse in a format that is easy to ingest into Polaris.

Learn More
Apr 06, 2022

Java Keytool, TLS, and Zookeeper Security

Lean the basics of Public Key Infrastructure (PKI) as it relates to Druid and Zookeeper security.

Learn More
Apr 01, 2022

Building high performance logging analytics with Polaris and Logstash

When you think of querying with Apache Druid, you probably imagine queries over massive data sets that run in less than a second. This blog is about some of the things we did as a team to discover the user...

Learn More
Apr 01, 2022

For April 1st: a New Description of Apache Druid from Our Youngest Technical Architect

A simple set of instructions to deploy Apache Druid on minikube using minio for local deep storage on your laptop.

Learn More

Let us help with your analytics apps

Request a Demo