Why GameAnalytics migrated to Apache Druid, and then to Imply
Feb 14, 2019
Ramón Lastres Guerrero, GameAnalytics
This is a guest post from Ramón Lastres Guerrero, Backend Team Lead @ GameAnalytics
Managing a large amount of data is no easy feat, especially when you have a rapidly increasing user base.At GameAnalytics, our user base has grown several times over in the past 12 months, and this growth has promoted us to rethink our user experience analytics system.
GameAnalytics is a popular and free cross-platform tool that helps developers refine their games by making informed changes based on data. Inside the platform, users can see all of the most important KPIs about their titles, including metrics such as ARPPU, retention, conversion, and more. A small backend team manages the core infrastructure behind our product, which is broadly divided among a few areas: ingestion, storage, annotation, analysis, and API access We run most of our infrastructure in AWS.
Life before Druid
Our raw data (JSON events) is delivered and stored in AWS S3. This data is not easily consumable by downstream systems in its preprocessed form, so we enrich and annotate it before it enters our primary analytics system.
Our original analytics system relied on 2 primary sub-systems: a homegrown Erlang/OTP system for real-time queries, and DynamoDB for historical queries. Our homegrown system utilized a MapReduce-like framework for computing results for real-time queries (data in the past 24 hours), and it was also responsible for creating a set of pre-computed results to store in DynamoDB. Although this setup was able to provide low latency queries through pre-computed results and functioned fine for a period of time, many difficulties began surfacing as we scaled.
Over time, we found our homegrown real-time system was not able to provide the level of stability, reliability, and performance we required. Furthermore, we quickly realized that although key/value stores such as DynamoDB are very good at fast inserts and fast retrievals, they are very limited in their capability to do ad-hoc analysis as data complexity grows.
Pre-computing results is about determining the queries users are likely to make, calculating the results to those queries ahead of time, and storing the queries and results in a fast retrieval system (such as a key/value store such as DynamoDB).The problem with this approach is that as more attributes/dimensions are included in the data, the total query set will grow exponentially in size. It quickly becomes computationally intractable and financially infeasible to pre-compute out all permutations of queries and results and store them. To combat these scalability issues, we initially tried to reduce the set of queries users could issue. We limited users to be able to only filter on a single attribute/dimension in their queries, but this became increasingly annoying for our clients as they could not do any ad-hoc analysis on their data. We quickly realized a new system was needed.
Selecting Druid
As we started searching for a new system to power our core analytics, we wanted to be able to offer customers the performance they had with pre-computed queries, but also empower them to issue arbitrary ad-hoc queries without restrictions on the number of dimensions they could group and filter on. We initially looked at timeseries databases such as Riak Timeseries (our team’s skillset is in Erlang and Riak is written in Erlang), but realized TSDBs aren’t great when grouping or filtering on dimensions that are not time Our focus then shifted to Druid.
Through our tests of Druid, we learned that we could leverage it as a single system for both our real-time and historical analysis Furthermore, it is built from the ground up for ad-hoc, multi-dimensional analysis As opposed to precomputing results, Druid instead stores an optimized, indexed version of raw data, and enables any arbitrary query to be issued against this data at any time Most queries we tried were completed in under a second.
As we became more familiar with the system, we also found that there was much more we could do with Druid than we could with our legacy system. We can stream data directly into Druid, which meant we could turn our analytics infrastructure to become entirely real-time Some of our other favourite features so far include:
Multi-dimensional filtering
Clear separation of resources for ingestion and query layer
More flexibility with fine-grained sizing of the cluster (we can now scale it up or down in parts)
Reprocessing data, without disturbing the rest of the DB and even externally using Hadoop/EMR
Built-in reliable real-time ingestion
Plays well with the tools we use within AWS: S3, Kinesis, EMR
Good support for approximation methods (HyperLogLog)
After comprehensive testing, we decided to invest in Druid as our next generation analytics system.
Productizing Druid with Imply
As a complex distributed system, running self-hosted Druid proved to be challenging. It also became clear that with Druid becoming the center of all our data pipelines, and given the lack of experience of the team with operating and maintaining JVM systems, we would need help.
On the backend team, we aim to use managed solutions as much as possible in order to reduce operational overhead. Thus, we partnered with Imply, the company behind Druid, and began using their managed Imply Cloud service, which is 100% Druid at its core. This service let us deploy our Druid application as a service, optimize our costs, and helped us save time. This meant that our small team could focus on other projects without having to maintain a complex deployment codebase.
After partnering with Imply, we found even more value in their suite of products. Pivot is extremely helpful for us, and has become our tool of choice for our support and product teams to explore all of our data in a flexible way. We leverage Clarity to monitor our Imply cluster, and it gives us all of the necessary insights into our production cluster, without the need for us to maintain a separate monitoring solution (such as Graphite).
Imply in production today
At the time of writing, we’ve migrated our entire analytics systems to be real-time. We ingest streaming data from AWS Kinesis into Imply at an average of 10 billion JSON events per day. When it comes to querying, our Imply cluster is serving around 100K requests per hour (at peak time). The average response time is around 600ms, with 98% of the queries being served in less than 450ms.
What’s next for GameAnalytics?
We have a custom query layer built in Elixir for Imply. We plan to expand how this query layer interacts with Imply and did open-source our work for Druid. You can find it here. We’re also investing time into more intelligent caching in our querying layer. This will help reduce response times for the most popular queries, remove pressure from our Imply cluster during peak hours, and improve the user experience. Finally, we just introduced A/B testing for our customers.
We’re very interested in further exploring the data sketches feature in Imply. The data sketch extension encompasses many approximate algorithms that are useful to measure user metrics, such as daily active users, user retention, and funnel analysis.
If you want to learn more about how we use Imply, you can watch our webinar.
Other blogs you might find interesting
No records found...
Nov 15, 2023
Introducing Apache Druid 28.0.0
Apache Druid 28.0, an open-source database for real-time analytics, introduces Async queries, UNION ALL support, SQL WINDOW functions, enhanced ingestion features, including multi-Kafka topic support, and...
This blog covers the rationale, advantages, and step-by-step process for data transfer from AWS s3 to Apache Druid for faster real-time analytics and querying.
What’s new in Imply Polaris, our real-time analytics DBaaS – September 2023
Every week, we add new features and capabilities to Imply Polaris. Throughout September, we've focused on enhancing your experience as you explore trials, navigate data integration, oversee data management,...
Introducing incremental encoding for Apache Druid dictionary encoded columns
In this blog post we deep dive on a recent engineering effort: incremental encoding of STRING columns. In preliminary testing, it has shown to be quite promising at significantly reducing the size of segment...
Migrate Analytics Data from MongoDB to Apache Druid
This blog presents a concise guide on migrating data from MongoDB to Druid. It includes Python scripts to extract data from MongoDB, save it as CSV, and then ingest it into Druid. It also touches on maintaining...
How Druid Facilitates Real-Time Analytics for Mass Transit
Mass transit plays a key role in reimagining life in a warmer, more densely populated world. Learn how Apache Druid helps power data and analytics for mass transit.
Migrate Analytics Data from Snowflake to Apache Druid
This blog outlines the steps needed to migrate data from Snowflake to Apache Druid, a platform designed for high-performance analytical queries. The article covers the migration process, including Python scripts...
Apache Kafka, Flink, and Druid: Open Source Essentials for Real-Time Data Applications
Apache Kafka, Flink, and Druid, when used together, create a real-time data architecture that eliminates all these wait states. In this blog post, we’ll explore how the combination of these tools enables...
Visualizing Data in Apache Druid with the Plotly Python Library
In today's data-driven world, making sense of vast datasets can be a daunting task. Visualizing this data can transform complicated patterns into actionable insights. This blog delves into the utilization of...
Bringing Real-Time Data to Solar Power with Apache Druid
In a rapidly warming world, solar power is critical for decarbonization. Learn how Apache Druid empowers a solar equipment manufacturer to provide real-time data to users, from utility plant operators to homeowners
When to Build (Versus Buy) an Observability Application
Observability is the key to software reliability. Here’s how to decide whether to build or buy your own solution—and why Apache Druid is a popular database for real-time observability
How Innowatts Simplifies Utility Management with Apache Druid
Data is a key driver of progress and innovation in all aspects of our society and economy. By bringing digital data to physical hardware, the Internet of Things (IoT) bridges the gap between the online and...
Three Ways to Use Apache Druid for Machine Learning Workflows
An excellent addition to any machine learning environment, Apache Druid® can facilitate analytics, streamline monitoring, and add real-time data to operations and training
Apache Druid® is an open-source distributed database designed for real-time analytics at scale. Apache Druid 27.0 contains over 350 commits & 46 contributors. This release's focus is on stability and scaling...
Unleashing Real-Time Analytics in APJ: Introducing Imply Polaris on AWS AP-South-1
Imply, the company founded by the original creators of Apache Druid, has exciting news for developers in India seeking to build real-time analytics applications. Introducing Imply Polaris, a powerful database-as-a-Service...
In this guide, we will walk you through creating a very simple web app that shows a different embedded chart for each user selected from a drop-down. While this example is simple it highlights the possibilities...
Automate Streaming Data Ingestion with Kafka and Druid
In this blog post, we explore the integration of Kafka and Druid for data stream management and analysis, emphasizing automatic topic detection and ingestion. We delve into the creation of 'Ingestion Spec',...
This guide explores configuring Apache Druid to receive Kafka streaming messages. To demonstrate Druid's game-changing automatic schema discovery. Using a real-world scenario where data changes are handled...
Imply Polaris, our ever-evolving Database-as-a-Service, recently focused on global expansion, enhanced security, and improved data handling and visualization. This fully managed cloud service, based on Apache...
Introducing hands-on developer tutorials for Apache Druid
The objective of this blog is to introduce the new set of interactive tutorials focused on the Druid API fundamentals. These tutorials are available as Jupyter Notebooks and can be downloaded as a Docker container.
In this blog article I’ll unpack schema auto-discovery, a new feature now available in Druid 26.0, that enables Druid to automatically discover data fields and data types and update tables to match changing...
Druid now has a new function, Unnest. Unnest explodes an array into individual elements. This blog contains design methodology and examples for this new Unnest function both from native and SQL binding perspectives.
What’s new in Imply Polaris – Our Real-Time Analytics DBaaS
Every week we add new features and capabilities to Imply Polaris. This month, we’ve expanded security capabilities, added new query functionality, and made it easier to monitor your service with your preferred...
Apache Druid® 26.0, an open-source distributed database for real-time analytics, has seen significant improvements with 411 new commits, a 40% increase from version 25.0. The expanded contributor base of 60...
How to Build a Sentiment Analysis Application with ChatGPT and Druid
Leveraging ChatGPT for sentiment analysis, when combined with Apache Druid, offers results from large data volumes. This integration is easily achievable, revealing valuable insights and trends for businesses...
In this blog, we will compare Snowflake and Druid. It is important to note that reporting data warehouses and real-time analytics databases are different domains. Choosing the right tool for your specific requirements...
Learn how to achieve sub-second responses with Apache Druid
Learn how to achieve sub-second responses with Apache Druid. This article is an in-depth look at how Druid resolves queries and describes data modeling techniques that improve performance.
Apache Druid uses load rules to manage the ageing of segments from one historical tier to another and finally to purge old segments from the cluster. In this article, we’ll show what happens when you make...
Real-Time Analytics: Building Blocks and Architecture
This blog identifies the key technical considerations for real-time analytics. It answers what is the right data architecture and why. It spotlights the technologies used at Confluent, Reddit, Target and 1000s...
What’s new in Imply Polaris – Our Real-Time Analytics DBaaS
This blog explains some of the new features, functionality and connectivity added to Imply Polaris over the last two months. We've expanded ingestion capabilities, simplified operations and increased reliability...
Wow, that was easy – Up and running with Apache Druid
The objective of this blog is to provide a step-by-step guide on setting up Druid locally, including the use of SQL ingestion for importing data and executing analytical queries.
Tales at Scale Podcast Kicks off with the Apache Druid Origin Story
Tales at Scale cracks open the world of analytics projects and shares stories from developers and engineers who are building analytics applications or working within the real-time data space. One of the key...
Real-time Analytics Database uses partitioning and pruning to achieve its legendary performance
Apache Druid uses partitioning (splitting data) and pruning (selecting subset of data) to achieve its legendary performance. Learn how to use the CLUSTERED BY clause during ingestion for performance and high...
Easily embed analytics into your own apps with Imply’s DBaaS
This blog explains how developers can leverage Imply Polaris to embed robust visualization options directly into their own applications without them having to build a UI. This is super important because consuming...
Building an Event Analytics Pipeline with Confluent Cloud and Imply’s real time DBaaS, Polaris
Learn how to set up a pipeline that generates a simulated clickstream event stream and sends it to Confluent Cloud, processes the raw clickstream data using managed ksqlDB in Confluent Cloud, delivers the processed...
We are excited to announce the availability of Imply Polaris in Europe, specifically in AWS eu-central-1 region based in Frankfurt. Since its launch in March 2022, Imply Polaris, the fully managed Database-as-a-Service...
Should You Build or Buy Security Analytics for SecOps?
When should you build—or buy—a security analytics platform for your environment? Here are some common considerations—and how Apache Druid is the ideal foundation for any in-house security solution.
Combating financial fraud and money laundering at scale with Apache Druid
Learn how Apache Druid enables financial services firms and FinTech companies to get immediate insights from petabytes-plus data volumes for anti-fraud and anti-money laundering compliance.
This is a what's new to Imply in Dec 2022. We’ve added two new features to Imply Polaris to make it easier for your end users to take advantage of real-time insights.
Imply Pivot delivers the final mile for modern analytics applications
This blog is focused on how Imply Pivot delivers the final mile for building an anlaytics app. It showcases two customer examples - Twitch and ironsource.
For decades, analytics has been defined by the standard reporting and BI workflow, supported by the data warehouse. Now, 1000s of companies are realizing an expansion of analytics beyond reporting, which requires...
Apache Druid is at the heart of Imply. We’re an open source business, and that’s why we’re committed to making Druid the best open source database for modern analytics applications
When it comes to modern data analytics applications, speed is of the utmost importance. In this blog we discuss two approximation algorithms which can be used to greatly enhance speed with only a slight reduction...
The next chapter for Imply Polaris: celebrating 250+ accounts, continued innovation
Today we announced the next iteration of Imply Polaris, the fully managed Database-as-a-Service that helps you build modern analytics applications faster, cheaper, and with less effort. Since its launch in...
We obviously talk a lot about #ApacheDruid on here. But what are folks actually building with Druid? What is a modern analytics application, exactly? Let's find out
Elasticity is important, but beware the database that can only save you money when your application is not in use. The best solution will have excellent price-performance under all conditions.
Druid 0.23 – Features And Capabilities For Advanced Scenarios
Many of Druid’s improvements focus on building a solid foundation, including making the system more stable, easier to use, faster to scale, and better integrated with the rest of the data ecosystem. But for...
Apache Druid 0.23.0 contains over 450 updates, including new features, major performance enhancements, bug fixes, and major documentation improvements.
Imply Polaris is a fully managed database-as-a-service for building realtime analytics applications. John is the tech lead for the Polaris UI, known internally as the Unified App. It began with a profound question:...
There is a new category within data analytics emerging which is not centered in the world of reports and dashboards (the purview of data analysts and data scientists), but instead centered in the world of applications...
We are in the early stages of a stream revolution, as developers build modern transactional and analytic applications that use real-time data continuously delivered.
Developers and architects must look beyond query performance to understand the operational realities of growing and managing a high performance database and if it will consume their valuable time.
Building high performance logging analytics with Polaris and Logstash
When you think of querying with Apache Druid, you probably imagine queries over massive data sets that run in less than a second. This blog is about some of the things we did as a team to discover the user...
Horizontal scaling is the key to performance at scale, which is why every database claims this. You should investigate, though, to see how much effort it takes, especially compared to Apache Druid.
When you think of querying with Apache Druid, you probably imagine queries over massive data sets that run in less than a second. This blog is about some of the things we did as a team to discover the user...
Building Analytics for External Users is a Whole Different Animal
Analytics aren’t just for internal stakeholders anymore. If you’re building an analytics application for customers, then you’re probably wondering…what’s the right database backend?
After over 30 years of working with data analytics, we’ve been witness (and sometimes participant) to three major shifts in how we find insights from data - and now we’re looking at the fourth.
Every year industry pundits predict data and analytics becoming more valuable the following year. But this doesn’t take a crystal ball to predict. There’s instead something much more interesting happening...
Today, I'm prepared to share our progress on this effort and some of our plans for the future. But before diving further into that, let's take a closer look at how Druid's core query engine executes queries,...
Product Update: SSO, Cluster level authorization, OAuth 2.0 and more security features
When you think of querying with Apache Druid, you probably imagine queries over massive data sets that run in less than a second. This blog is about some of the things we did as a team to discover the user...
When you think of querying with Apache Druid, you probably imagine queries over massive data sets that run in less than a second. This blog is about some of the things we did as a team to discover the user...
Druid Nails Cost Efficiency Challenge Against ClickHouse & Rockset
To make a long story short, we were pleased to confirm that Druid is 2 times faster than ClickHouse and 8 times faster than Rockset with fewer hardware resources!.
Unveiling Project Shapeshift Nov. 9th at Druid Summit 2021
There is a new category within data analytics emerging which is not centered in the world of reports and dashboards (the purview of data analysts and data scientists), but instead centered in the world of applications...
How we made long-running queries work in Apache Druid
When you think of querying with Apache Druid, you probably imagine queries over massive data sets that run in less than a second. This blog is about some of the things we did as a team to discover the user...