Your relational database won’t scale for analytics
Feb 11, 2021
Danny D. Leybzon
Are you building a data-driven web application that needs to serve data to your users with low latencies? Are you using MySQL, Postgres, or another traditional RDBMS as the backend for that web application? If so, you’re inevitably going to run into scalability issues as your dataset expands and your usage demands grow. These scalability issues will result in massive performance degradations for your users if you don’t find a solution that scales to meet your growing needs. Fortunately, Apache Druid is exactly what you need to keep costs down while enabling hundreds of your users to simultaneously query terabytes of your data with sub-second latencies.
These scalability issues occur because traditional RDBMSs simply aren’t designed to handle massive datasets or high concurrency. They are natively single-server, single-threaded, and are designed to only scale vertically (by increasing the size of the server) rather than horizontally (by increasing the number of servers). Although recent versions of Postgres have introduced parallel queries (still missing in MySQL and most other RDBMSs), even Postgres servers are still unable to handle even dozens of concurrent queries, let alone terabytes of data or complex query plans. As the Postgres docs themselves point out, “Many queries cannot benefit from parallel query,” leaving engineers with no option but to find another database.
With your growing user base and dataset, it’s important to think about how your backend will scale to meet your demand.
A quick history of backends for custom data applications
Once upon a time, all data was stored in traditional database systems. Data would be generated either by a user interacting with an application or from some source external to the application, stored in the database, and then surfaced to the user through the application.
This works well enough at first, but things quickly change when internal users want to run analytics on that data as well. Product managers, engineers, and even executives inevitably want access to usage data (such as the number of active users, number of interactions, etc), which means that business intelligence (BI) reports get run directly against the database. This increase in query volume and concurrent requests results in performance degradation for external users, making applications run slower and decreasing user engagement.
In response to this, we began to see the rise of data warehouses, ETL, and data engineers. Data warehouses are data storage systems which are explicitly created to service those internal users, offloading that burden from the traditional database which could still be used to power front end applications. Data engineers would write ETL (Extract-Transform-Load) scripts to process and move the data from databases into data warehouses, thereby enabling BI functionality without negatively impacting the performance of the user facing application.
The introduction of data warehousing helped to offload the burden from the databases powering the application, but ultimately even horizontally scalable data warehouses couldn’t totally replace RDBMS systems. Simply put, data warehouses like Redshift, Snowflake, and BigQuery, were developed to power BI reporting and what’s called “cold analytics”, where queries can return in the matter of minutes and concurrency is low. They aren’t built to power interactive applications, where you can have dozens of users submitting requests simultaneously and wanting their results back in less than a second.
With horizontally-scalable data warehouses unable to service data-driven applications, where should developers look when their Postgres or MySQL database starts to fail? One approach that engineers have tried is to pre-compute the entire range of possible query results and store them in a key-value store like Apache Cassandra or Dynamo.
This approach has the advantage of being able to handle lots of concurrent requests while maintaining low latencies, but has some obvious drawbacks. One drawback is that pre-computing query results is a computationally expensive operation, as all possible permutations of filters and groupings must be computed, which means either limiting the types of questions that users can ask of their data or spending inordinate amounts of compute resources on pre-computing these queries. The other drawback is that new data coming in won’t be added to the query results until the query pre-computation operation has run again, meaning that any semblance of real-time ingestion is lost.
In summary, the options for backends that we’ve explored all have limitations. RDBMSs such as Postgres and MySQL are easy to stand up and offer great interactivity, but simply can’t scale beyond a single server, limiting your ability to grow your application. Data warehouses such as Redshift, Snowflake, and BigQuery can help to offload some of the BI workloads from your RDBMS, but ultimately aren’t built to support interactive, custom data applications. And although the key-value store gives both scalability and fast latencies, the need to pre-compute data means that you’re limiting the breadth of questions that your users can ask and won’t be able to surface new data to end users in real time. So, does there exist a solution which will give us the interactivity of an RDBMS, scalability of a data warehouse, and the concurrency of a key-value store?
Druid to the rescue
Apache Druid was created explicitly with the limitations of these prior systems in mind. Imply cofounders Fangjin Yang and Gian Merlino were working at Metamarkets, a data platform for advertisers, when they surveyed the marketplace and saw that no existing tool or solution provided the features that they needed to act as a backend for their custom data application. That’s why Apache Druid was designed to allow users to continue having a conversation with their data, just like they’re used to having with an RDBMS backend to a data-driven application, while also enabling massive scalability beyond the limitations of a traditional RDBMS.
Druid scales both horizontally and vertically, meaning that as your concurrency demands and the size of your data increase, you can just add more servers to the cluster or increase the size of the current servers.
Druid is also built for speed AND redundancy. The data is stored on the local server much like a traditional database. This provides for fast queries because latency between disk and CPU is minimized. Additionally, a copy of the data is stored in HDFS or an object store which means that the data is already set up for redundancy and disaster recovery.
Druid’s optimized data format allows for fast querying of the data regardless of the question the user is asking of the data. Gone are the days of limiting what users’ can ask based on what indexes exist in the data schema.
Another example of how Apache Druid is designed for custom data applications is its ability to ingest data in real time from streaming sources like Apache Kafka and Amazon’s Kinesis. These message buses have become mainstays in event-driven and streaming architectures, allowing users to access data almost as soon as it’s created. None of the tools discussed above are able to ingest data quickly from these streaming sources, meaning that the real-time capabilities that these message buses should provide are lost if you’re not using Druid.
What Druid is and what it isn’t
Of course, any system isn’t without its tradeoffs, and it would be disingenuous to pretend that Apache Druid is a magic bullet database that will be the best tool for every job. Druid allows for incredible scalability, incredibly low latencies, and incredibly high concurrency, which makes it the perfect tool for data-driven applications that need to rapidly surface data to their users. However, Druid is an OLAP database, so it’s great for analytical workloads but not transactional ones.
This means that if you’re frequently updating or deleting individual rows in your database, Druid isn’t the correct database for you. Simply put, Druid stores data in a columnar data format, which means that modifying a single row means opening and rewriting multiple files to make those changes. For this reason, Druid works best when replacing Postgres and MySQL for analytical workloads, which simply append new data to an existing dataset rather than modifying the rows in the existing dataset.
I’ve seen Druid be incredibly successful at replacing traditional RDBMSs for fully analytical workloads or working side-by-side with a traditional RDBMS where transactional workloads are handled by the RDBMS and analytical ones by Druid. Transactional workloads represent a fraction of the current usage of RDBMSs, so if you’re primarily using your RDBMS for analytical workloads, I highly recommend looking into Apache Druid as the new backend for your custom data application.
It’s time to move on from RDBMS
I decided to write this post because I’ve been seeing so many companies use an RDBMS as the backend for their custom data application, run into huge performance issues when their application began to scale, and then rescue their product with Apache Druid. I’ve seen Postgres DBAs try every trick in the book to hack their way into scaling Postgres way beyond what it was intended for, and then reap the consequences when those hacks inevitably failed. Rather than go through the same growing pains that so many have gone through, I invite you to reach out and see whether Apache Druid and Imply might be a good fit for powering your data-driven application.
Other blogs you might find interesting
No records found...
Nov 15, 2023
Introducing Apache Druid 28.0.0
Apache Druid 28.0, an open-source database for real-time analytics, introduces Async queries, UNION ALL support, SQL WINDOW functions, enhanced ingestion features, including multi-Kafka topic support, and...
This blog covers the rationale, advantages, and step-by-step process for data transfer from AWS s3 to Apache Druid for faster real-time analytics and querying.
What’s new in Imply Polaris, our real-time analytics DBaaS – September 2023
Every week, we add new features and capabilities to Imply Polaris. Throughout September, we've focused on enhancing your experience as you explore trials, navigate data integration, oversee data management,...
Introducing incremental encoding for Apache Druid dictionary encoded columns
In this blog post we deep dive on a recent engineering effort: incremental encoding of STRING columns. In preliminary testing, it has shown to be quite promising at significantly reducing the size of segment...
Migrate Analytics Data from MongoDB to Apache Druid
This blog presents a concise guide on migrating data from MongoDB to Druid. It includes Python scripts to extract data from MongoDB, save it as CSV, and then ingest it into Druid. It also touches on maintaining...
How Druid Facilitates Real-Time Analytics for Mass Transit
Mass transit plays a key role in reimagining life in a warmer, more densely populated world. Learn how Apache Druid helps power data and analytics for mass transit.
Migrate Analytics Data from Snowflake to Apache Druid
This blog outlines the steps needed to migrate data from Snowflake to Apache Druid, a platform designed for high-performance analytical queries. The article covers the migration process, including Python scripts...
Apache Kafka, Flink, and Druid: Open Source Essentials for Real-Time Data Applications
Apache Kafka, Flink, and Druid, when used together, create a real-time data architecture that eliminates all these wait states. In this blog post, we’ll explore how the combination of these tools enables...
Visualizing Data in Apache Druid with the Plotly Python Library
In today's data-driven world, making sense of vast datasets can be a daunting task. Visualizing this data can transform complicated patterns into actionable insights. This blog delves into the utilization of...
Bringing Real-Time Data to Solar Power with Apache Druid
In a rapidly warming world, solar power is critical for decarbonization. Learn how Apache Druid empowers a solar equipment manufacturer to provide real-time data to users, from utility plant operators to homeowners
When to Build (Versus Buy) an Observability Application
Observability is the key to software reliability. Here’s how to decide whether to build or buy your own solution—and why Apache Druid is a popular database for real-time observability
How Innowatts Simplifies Utility Management with Apache Druid
Data is a key driver of progress and innovation in all aspects of our society and economy. By bringing digital data to physical hardware, the Internet of Things (IoT) bridges the gap between the online and...
Three Ways to Use Apache Druid for Machine Learning Workflows
An excellent addition to any machine learning environment, Apache Druid® can facilitate analytics, streamline monitoring, and add real-time data to operations and training
Apache Druid® is an open-source distributed database designed for real-time analytics at scale. Apache Druid 27.0 contains over 350 commits & 46 contributors. This release's focus is on stability and scaling...
Unleashing Real-Time Analytics in APJ: Introducing Imply Polaris on AWS AP-South-1
Imply, the company founded by the original creators of Apache Druid, has exciting news for developers in India seeking to build real-time analytics applications. Introducing Imply Polaris, a powerful database-as-a-Service...
In this guide, we will walk you through creating a very simple web app that shows a different embedded chart for each user selected from a drop-down. While this example is simple it highlights the possibilities...
Automate Streaming Data Ingestion with Kafka and Druid
In this blog post, we explore the integration of Kafka and Druid for data stream management and analysis, emphasizing automatic topic detection and ingestion. We delve into the creation of 'Ingestion Spec',...
This guide explores configuring Apache Druid to receive Kafka streaming messages. To demonstrate Druid's game-changing automatic schema discovery. Using a real-world scenario where data changes are handled...
Imply Polaris, our ever-evolving Database-as-a-Service, recently focused on global expansion, enhanced security, and improved data handling and visualization. This fully managed cloud service, based on Apache...
Introducing hands-on developer tutorials for Apache Druid
The objective of this blog is to introduce the new set of interactive tutorials focused on the Druid API fundamentals. These tutorials are available as Jupyter Notebooks and can be downloaded as a Docker container.
In this blog article I’ll unpack schema auto-discovery, a new feature now available in Druid 26.0, that enables Druid to automatically discover data fields and data types and update tables to match changing...
Druid now has a new function, Unnest. Unnest explodes an array into individual elements. This blog contains design methodology and examples for this new Unnest function both from native and SQL binding perspectives.
What’s new in Imply Polaris – Our Real-Time Analytics DBaaS
Every week we add new features and capabilities to Imply Polaris. This month, we’ve expanded security capabilities, added new query functionality, and made it easier to monitor your service with your preferred...
Apache Druid® 26.0, an open-source distributed database for real-time analytics, has seen significant improvements with 411 new commits, a 40% increase from version 25.0. The expanded contributor base of 60...
How to Build a Sentiment Analysis Application with ChatGPT and Druid
Leveraging ChatGPT for sentiment analysis, when combined with Apache Druid, offers results from large data volumes. This integration is easily achievable, revealing valuable insights and trends for businesses...
In this blog, we will compare Snowflake and Druid. It is important to note that reporting data warehouses and real-time analytics databases are different domains. Choosing the right tool for your specific requirements...
Learn how to achieve sub-second responses with Apache Druid
Learn how to achieve sub-second responses with Apache Druid. This article is an in-depth look at how Druid resolves queries and describes data modeling techniques that improve performance.
Apache Druid uses load rules to manage the ageing of segments from one historical tier to another and finally to purge old segments from the cluster. In this article, we’ll show what happens when you make...
Real-Time Analytics: Building Blocks and Architecture
This blog identifies the key technical considerations for real-time analytics. It answers what is the right data architecture and why. It spotlights the technologies used at Confluent, Reddit, Target and 1000s...
What’s new in Imply Polaris – Our Real-Time Analytics DBaaS
This blog explains some of the new features, functionality and connectivity added to Imply Polaris over the last two months. We've expanded ingestion capabilities, simplified operations and increased reliability...
Wow, that was easy – Up and running with Apache Druid
The objective of this blog is to provide a step-by-step guide on setting up Druid locally, including the use of SQL ingestion for importing data and executing analytical queries.
Tales at Scale Podcast Kicks off with the Apache Druid Origin Story
Tales at Scale cracks open the world of analytics projects and shares stories from developers and engineers who are building analytics applications or working within the real-time data space. One of the key...
Real-time Analytics Database uses partitioning and pruning to achieve its legendary performance
Apache Druid uses partitioning (splitting data) and pruning (selecting subset of data) to achieve its legendary performance. Learn how to use the CLUSTERED BY clause during ingestion for performance and high...
Easily embed analytics into your own apps with Imply’s DBaaS
This blog explains how developers can leverage Imply Polaris to embed robust visualization options directly into their own applications without them having to build a UI. This is super important because consuming...
Building an Event Analytics Pipeline with Confluent Cloud and Imply’s real time DBaaS, Polaris
Learn how to set up a pipeline that generates a simulated clickstream event stream and sends it to Confluent Cloud, processes the raw clickstream data using managed ksqlDB in Confluent Cloud, delivers the processed...
We are excited to announce the availability of Imply Polaris in Europe, specifically in AWS eu-central-1 region based in Frankfurt. Since its launch in March 2022, Imply Polaris, the fully managed Database-as-a-Service...
Should You Build or Buy Security Analytics for SecOps?
When should you build—or buy—a security analytics platform for your environment? Here are some common considerations—and how Apache Druid is the ideal foundation for any in-house security solution.
Combating financial fraud and money laundering at scale with Apache Druid
Learn how Apache Druid enables financial services firms and FinTech companies to get immediate insights from petabytes-plus data volumes for anti-fraud and anti-money laundering compliance.
This is a what's new to Imply in Dec 2022. We’ve added two new features to Imply Polaris to make it easier for your end users to take advantage of real-time insights.
Imply Pivot delivers the final mile for modern analytics applications
This blog is focused on how Imply Pivot delivers the final mile for building an anlaytics app. It showcases two customer examples - Twitch and ironsource.
For decades, analytics has been defined by the standard reporting and BI workflow, supported by the data warehouse. Now, 1000s of companies are realizing an expansion of analytics beyond reporting, which requires...
Apache Druid is at the heart of Imply. We’re an open source business, and that’s why we’re committed to making Druid the best open source database for modern analytics applications
When it comes to modern data analytics applications, speed is of the utmost importance. In this blog we discuss two approximation algorithms which can be used to greatly enhance speed with only a slight reduction...
The next chapter for Imply Polaris: celebrating 250+ accounts, continued innovation
Today we announced the next iteration of Imply Polaris, the fully managed Database-as-a-Service that helps you build modern analytics applications faster, cheaper, and with less effort. Since its launch in...
We obviously talk a lot about #ApacheDruid on here. But what are folks actually building with Druid? What is a modern analytics application, exactly? Let's find out
Elasticity is important, but beware the database that can only save you money when your application is not in use. The best solution will have excellent price-performance under all conditions.
Druid 0.23 – Features And Capabilities For Advanced Scenarios
Many of Druid’s improvements focus on building a solid foundation, including making the system more stable, easier to use, faster to scale, and better integrated with the rest of the data ecosystem. But for...
Apache Druid 0.23.0 contains over 450 updates, including new features, major performance enhancements, bug fixes, and major documentation improvements.
Imply Polaris is a fully managed database-as-a-service for building realtime analytics applications. John is the tech lead for the Polaris UI, known internally as the Unified App. It began with a profound question:...
There is a new category within data analytics emerging which is not centered in the world of reports and dashboards (the purview of data analysts and data scientists), but instead centered in the world of applications...
We are in the early stages of a stream revolution, as developers build modern transactional and analytic applications that use real-time data continuously delivered.
Developers and architects must look beyond query performance to understand the operational realities of growing and managing a high performance database and if it will consume their valuable time.
Building high performance logging analytics with Polaris and Logstash
When you think of querying with Apache Druid, you probably imagine queries over massive data sets that run in less than a second. This blog is about some of the things we did as a team to discover the user...
Horizontal scaling is the key to performance at scale, which is why every database claims this. You should investigate, though, to see how much effort it takes, especially compared to Apache Druid.
When you think of querying with Apache Druid, you probably imagine queries over massive data sets that run in less than a second. This blog is about some of the things we did as a team to discover the user...
Building Analytics for External Users is a Whole Different Animal
Analytics aren’t just for internal stakeholders anymore. If you’re building an analytics application for customers, then you’re probably wondering…what’s the right database backend?
After over 30 years of working with data analytics, we’ve been witness (and sometimes participant) to three major shifts in how we find insights from data - and now we’re looking at the fourth.
Every year industry pundits predict data and analytics becoming more valuable the following year. But this doesn’t take a crystal ball to predict. There’s instead something much more interesting happening...
Today, I'm prepared to share our progress on this effort and some of our plans for the future. But before diving further into that, let's take a closer look at how Druid's core query engine executes queries,...
Product Update: SSO, Cluster level authorization, OAuth 2.0 and more security features
When you think of querying with Apache Druid, you probably imagine queries over massive data sets that run in less than a second. This blog is about some of the things we did as a team to discover the user...
When you think of querying with Apache Druid, you probably imagine queries over massive data sets that run in less than a second. This blog is about some of the things we did as a team to discover the user...
Druid Nails Cost Efficiency Challenge Against ClickHouse & Rockset
To make a long story short, we were pleased to confirm that Druid is 2 times faster than ClickHouse and 8 times faster than Rockset with fewer hardware resources!.
Unveiling Project Shapeshift Nov. 9th at Druid Summit 2021
There is a new category within data analytics emerging which is not centered in the world of reports and dashboards (the purview of data analysts and data scientists), but instead centered in the world of applications...
How we made long-running queries work in Apache Druid
When you think of querying with Apache Druid, you probably imagine queries over massive data sets that run in less than a second. This blog is about some of the things we did as a team to discover the user...