As Data Analytics Evolves, We Need to Get Real (Time)
Contributing authors: Darin Briskman and Eric Tschetter
We like data! We also like thinking about how to use data to get the insights we crave to accelerate our success – improving health outcomes, getting the right products quickly to the people who need them, increasing opportunity and equity, understanding risks, helping people find the music and games they want, and the millions of other fun and cool things we can do with data.
After over 30 years of working with data analytics, we’ve been witness (and sometimes participant) to three major shifts in how we find insights from data – and now we’re looking at the fourth.
The first shift – Going to CRUD
In the beginning, Codd created the database. And he looked upon it and saw that it was CRUD.
It wasn’t really the beginning, of course. There had been databases for a few decades, using hierarchical and network models that were focused on automating legacy processes that had been done using pens, paper, and mechanical calculators. But when IBM’s Dr. Ted Codd published “A Relational Model of Data for Large Shared Data Banks” in 1970 it kicked off a new era for data, with relational databases as the basis of a data revolution in the 1980s and 1990s, defining the tables with rows and columns that we all use today.
Another group at IBM developed SQL, which made getting data into databases and out of databases much easier. An explosion of relational databases followed, as groups around the world used SQL with Oracle, DB2, Sybase, Ingres, and too many other relational databases to name.
At its core, relational SQL is CRUD: tools to Create, Read, Update, and Delete data. It’s a brilliant approach to make large data sets practical at a time when compute and storage were very expensive – in 1983, when Oracle made its first sale (to the Central Intelligence Agency), a GB of storage cost about $500,000 (in 1983 dollars – that’s about $1.4m today), while a GB of memory cost about $2m ($5.6m today).
To control these costs, CRUD gained a collection of tools to store data more efficiently by breaking data in lots and lots of smaller tables which Dr. Codd named normalization (why? A big news story of the 70s was the US “normalizing” its relationship with China; Codd figured that if Nixon could normalize China, he could normalize data). This added complexity to data management, which means more developer time to work with data. But when a GB of storage is the same price as 5 person-years of developer time, the complexity was considered well worth the price.
Highly normalized CRUD is great for transactions, where you need to input data fast and get answers to simple questions, like “what’s the status of order #8675309?”. As more data became available, people wanted to ask more complex questions, like “what are my 10 most profitable products and how has that changed over the last 8 quarters?”. The answer: analytical databases.
Analytics requires data stored in an analytics-friendly format, with the data at least partially denormalized (fewer, bigger data tables). It became clear that using the same dataset for both transactions and analytics would make both work poorly, so early analytics started by using a second copy of the data on a second installation of the database software.
The second shift – CRUDdy Appliances
As analytics became more complex, we saw the rise of appliances – dedicated data warehousing hardware + software from Teradata, Netezza, Greenplum, and others. It was still all relational CRUD, with whole new categories of software created to extract data transactional systems (finance, human resources, shipping, supply chain, sales, and such), transform it to a different CRUD schema that is friendly for analytics, and load it into analytic databases, using software from Informatica, IBM, and others. We also saw the rise of business intelligence tools to turn data into pictures and reports that humans can more easily use, like Hyperion, Business Objects, Cognos, and Microstrategy.
This whole data ecosystem was disrupted and reformed, first by the Internet. The Internet radically increased the amount of data created and used. In 1995, a “big application” might be an SAP system with 5,000 users, and a 1TB data warehouse was considered huge. By 2005, “big applications” like Google search, Amazon commerce, and Facebook had millions of users. Pushing this much data through a CRUD pipeline was both too expensive and ineffective. Something new was needed.
The third shift – CRUD in the Cloud
A new generation of analytics databases arose to deal with larger datasets, like Aster Data, Vertica, and ParAccel. As this new generation entered the market, many believed that they would displace data warehousing as we knew it, connecting the new realities of our internet age with the CRUDdy infrastructure of the past. Little did these technologies know that the new realities of the internet age were going to bring about a change that would disrupt their very foundations. The internet brought home a new friend to meet the parents: the Cloud. Life with data changed again.
With effectively unlimited cheap computing power and cheap storage on-demand from Amazon Web Services at first and soon from Microsoft Azure, Google Cloud, and many others, It was now possible to re-design and re-create how to approach analytics. One of the clearest stories of just how much deployment and operations in the cloud was transformational to these databases, we can look at ParAccel. As a technology, it was one of the new-comers in this generation, but was struggling in the marketplace. Then, they formed a partnership with AWS, which took the ParAccel technology and offered it as a service known as Redshift. Redshift took off, opening the door for other cloud-native data warehouses like Google BigQuery and Snowflake, offering high scalability, combined with new cloud-focused data pipeline tools (like Fivetran and Matillion) and business intelligence tools (Looker, Tableau, Domo, Apache Superset, and others) to redefine the data warehouse.
Of course, Cloud Computing also powered the rapid growth of applications, as not just Internet giants but a wide range of businesses and governments found themselves operating applications with millions or dozens of millions of users. Pushing this much data through a CRUDdy pipeline just takes too long and costs too much.
As we entered the 2010s, data engineers were struggling with this problem. How can we have interactive conversations with high-volume data? The data streams in from the Internet and other applications – why not just analyze the data stream instead of converting it all to relational CRUD?
The need for a Modern Database
We can find a great example of how this shift to powering analytical applications shows up in the real world by looking at Reddit. They explain in a blog post (https://www.redditinc.com/blog/scaling-reporting-at-reddit/) how they need to expose direct insights into the effectiveness of their advertising and just couldn’t do it without new database options.
Reddit advertisements generate tens of gigabytes of event data per hour. To let advertisers both understand their impact and decide how to target their spending, Reddit needs to enable interactive queries across the last six months of data – hundreds of billions of raw events to sift through!
Reddit needs to empower advertisers to see groups and sizes in real time, adjusting based on interests (sports, art, movies, technology …) and locations to find how many redittors fit their target.
(There’s a detailed explanation of this on YouTube)
Here we see the changes required by modern analytics applications: large numbers of people (in this case, advertisers) conducting interactive conversations with large, fast moving data sets that combine new data from streams with historical data.
The fourth shift – Beyond CRUD
As you might have noticed from the Reddit example, there is a new database hiding in this solution: Druid.
As the need to stream analytics emerged, several projects tried different approaches to make it work. One advertising technology company needed a database that could combine stream analytics (for high-volume incoming data) with historical data (stored as relational CRUD) and found that every existing technology was either too slow, not scalable enough, or too expensive for their needs. Since they needed a database that could shift “shape” to address both streaming and historic data, and they had grown up playing Dungeons & Dragons, the new database was named after the D&D druid, a sort of shapeshifting magician.
Druid became an open source project under the Apache Foundation in 2013, and was quickly adopted by a wide range of people looking to analyze streams or a combination of stream data and historical data. Druid became a leader in the field of real-time databases, and, over time, several companies were created to help developers use Apache Druid®, led by Imply Data, founded by Druid’s co-creators.
To make something like this work, you need subsecond response times for questions from billions of data points, some in streams and some in historical datasets. Concurrency is also paramount, as there may be dozens or hundreds or more people asking questions of the data at the same time. And, of course, it needs to be done on a budget, where value delivered greatly outweighs the cost of operation.
While storage and computing still cost money, in modern development they are far far smaller than the cost of developer time – compute power is now a few dollars per hour, while object storage costs $23/TB per month or less. Meanwhile, the full-laden cost of a US developer, including salary, benefits, equipment, and management, is $55 – $80 per hour. Developer time (and, once the application is deployed, similar costs for administrators to operate it) are by far the greatest expense. In modern economics, if you spend an hour of a single developer’s or administrator’s time a day to save a TB of storage, you are losing over $100,000 per year.
The Path Forward – Still some CRUD, but also Modernity
We have entered a new age, and CRUD is no longer enough.
There are still good uses for analytics with relational CRUD. Most organizations still need annual and quarterly reporting, if only to meet regulatory requirements. This sort of “not real time” reporting works well with CRUD.
For teams to have meaningful interactive conversations with data, modern real-time databases are key. It just takes too long and costs too much to push all the data through the CRUD data pipeline.
If you are a developer or a professional with an interest in data, I strongly suggest you take a look at the real-time databases now available. For me, the one with the best combination of support and capabilities is Imply Enterprise, which is built using Apache Druid, adding technical support and packages for easy deployment to automate scaling and operations. But whatever you choose, be ready to take your team beyond CRUD and embrace modernity!
This blog covers the rationale, advantages, and step-by-step process for data transfer from AWS s3 to Apache Druid for faster real-time analytics and querying.
What’s new in Imply Polaris, our real-time analytics DBaaS – September 2023
Every week, we add new features and capabilities to Imply Polaris. Throughout September, we've focused on enhancing your experience as you explore trials, navigate data integration, oversee data management,...
Introducing incremental encoding for Apache Druid dictionary encoded columns
In this blog post we deep dive on a recent engineering effort: incremental encoding of STRING columns. In preliminary testing, it has shown to be quite promising at significantly reducing the size of segment...
Migrate Analytics Data from MongoDB to Apache Druid
This blog presents a concise guide on migrating data from MongoDB to Druid. It includes Python scripts to extract data from MongoDB, save it as CSV, and then ingest it into Druid. It also touches on maintaining...
How Druid Facilitates Real-Time Analytics for Mass Transit
Mass transit plays a key role in reimagining life in a warmer, more densely populated world. Learn how Apache Druid helps power data and analytics for mass transit.
Migrate Analytics Data from Snowflake to Apache Druid
This blog outlines the steps needed to migrate data from Snowflake to Apache Druid, a platform designed for high-performance analytical queries. The article covers the migration process, including Python scripts...
Apache Kafka, Flink, and Druid: Open Source Essentials for Real-Time Data Applications
Apache Kafka, Flink, and Druid, when used together, create a real-time data architecture that eliminates all these wait states. In this blog post, we’ll explore how the combination of these tools enables...
Visualizing Data in Apache Druid with the Plotly Python Library
In today's data-driven world, making sense of vast datasets can be a daunting task. Visualizing this data can transform complicated patterns into actionable insights. This blog delves into the utilization of...
Bringing Real-Time Data to Solar Power with Apache Druid
In a rapidly warming world, solar power is critical for decarbonization. Learn how Apache Druid empowers a solar equipment manufacturer to provide real-time data to users, from utility plant operators to homeowners
When to Build (Versus Buy) an Observability Application
Observability is the key to software reliability. Here’s how to decide whether to build or buy your own solution—and why Apache Druid is a popular database for real-time observability
How Innowatts Simplifies Utility Management with Apache Druid
Data is a key driver of progress and innovation in all aspects of our society and economy. By bringing digital data to physical hardware, the Internet of Things (IoT) bridges the gap between the online and...
Three Ways to Use Apache Druid for Machine Learning Workflows
An excellent addition to any machine learning environment, Apache Druid® can facilitate analytics, streamline monitoring, and add real-time data to operations and training
Apache Druid® is an open-source distributed database designed for real-time analytics at scale. Apache Druid 27.0 contains over 350 commits & 46 contributors. This release's focus is on stability and scaling...
Unleashing Real-Time Analytics in APJ: Introducing Imply Polaris on AWS AP-South-1
Imply, the company founded by the original creators of Apache Druid, has exciting news for developers in India seeking to build real-time analytics applications. Introducing Imply Polaris, a powerful database-as-a-Service...
In this guide, we will walk you through creating a very simple web app that shows a different embedded chart for each user selected from a drop-down. While this example is simple it highlights the possibilities...
Automate Streaming Data Ingestion with Kafka and Druid
In this blog post, we explore the integration of Kafka and Druid for data stream management and analysis, emphasizing automatic topic detection and ingestion. We delve into the creation of 'Ingestion Spec',...
This guide explores configuring Apache Druid to receive Kafka streaming messages. To demonstrate Druid's game-changing automatic schema discovery. Using a real-world scenario where data changes are handled...
Imply Polaris, our ever-evolving Database-as-a-Service, recently focused on global expansion, enhanced security, and improved data handling and visualization. This fully managed cloud service, based on Apache...
Introducing hands-on developer tutorials for Apache Druid
The objective of this blog is to introduce the new set of interactive tutorials focused on the Druid API fundamentals. These tutorials are available as Jupyter Notebooks and can be downloaded as a Docker container.
In this blog article I’ll unpack schema auto-discovery, a new feature now available in Druid 26.0, that enables Druid to automatically discover data fields and data types and update tables to match changing...
Druid now has a new function, Unnest. Unnest explodes an array into individual elements. This blog contains design methodology and examples for this new Unnest function both from native and SQL binding perspectives.
What’s new in Imply Polaris – Our Real-Time Analytics DBaaS
Every week we add new features and capabilities to Imply Polaris. This month, we’ve expanded security capabilities, added new query functionality, and made it easier to monitor your service with your preferred...
Apache Druid® 26.0, an open-source distributed database for real-time analytics, has seen significant improvements with 411 new commits, a 40% increase from version 25.0. The expanded contributor base of 60...
How to Build a Sentiment Analysis Application with ChatGPT and Druid
Leveraging ChatGPT for sentiment analysis, when combined with Apache Druid, offers results from large data volumes. This integration is easily achievable, revealing valuable insights and trends for businesses...
In this blog, we will compare Snowflake and Druid. It is important to note that reporting data warehouses and real-time analytics databases are different domains. Choosing the right tool for your specific requirements...
Learn how to achieve sub-second responses with Apache Druid
Learn how to achieve sub-second responses with Apache Druid. This article is an in-depth look at how Druid resolves queries and describes data modeling techniques that improve performance.
Apache Druid uses load rules to manage the ageing of segments from one historical tier to another and finally to purge old segments from the cluster. In this article, we’ll show what happens when you make...
Real-Time Analytics: Building Blocks and Architecture
This blog identifies the key technical considerations for real-time analytics. It answers what is the right data architecture and why. It spotlights the technologies used at Confluent, Reddit, Target and 1000s...
What’s new in Imply Polaris – Our Real-Time Analytics DBaaS
This blog explains some of the new features, functionality and connectivity added to Imply Polaris over the last two months. We've expanded ingestion capabilities, simplified operations and increased reliability...
Wow, that was easy – Up and running with Apache Druid
The objective of this blog is to provide a step-by-step guide on setting up Druid locally, including the use of SQL ingestion for importing data and executing analytical queries.
Tales at Scale Podcast Kicks off with the Apache Druid Origin Story
Tales at Scale cracks open the world of analytics projects and shares stories from developers and engineers who are building analytics applications or working within the real-time data space. One of the key...
Real-time Analytics Database uses partitioning and pruning to achieve its legendary performance
Apache Druid uses partitioning (splitting data) and pruning (selecting subset of data) to achieve its legendary performance. Learn how to use the CLUSTERED BY clause during ingestion for performance and high...
Easily embed analytics into your own apps with Imply’s DBaaS
This blog explains how developers can leverage Imply Polaris to embed robust visualization options directly into their own applications without them having to build a UI. This is super important because consuming...
Building an Event Analytics Pipeline with Confluent Cloud and Imply’s real time DBaaS, Polaris
Learn how to set up a pipeline that generates a simulated clickstream event stream and sends it to Confluent Cloud, processes the raw clickstream data using managed ksqlDB in Confluent Cloud, delivers the processed...
We are excited to announce the availability of Imply Polaris in Europe, specifically in AWS eu-central-1 region based in Frankfurt. Since its launch in March 2022, Imply Polaris, the fully managed Database-as-a-Service...
Should You Build or Buy Security Analytics for SecOps?
When should you build—or buy—a security analytics platform for your environment? Here are some common considerations—and how Apache Druid is the ideal foundation for any in-house security solution.
Combating financial fraud and money laundering at scale with Apache Druid
Learn how Apache Druid enables financial services firms and FinTech companies to get immediate insights from petabytes-plus data volumes for anti-fraud and anti-money laundering compliance.
This is a what's new to Imply in Dec 2022. We’ve added two new features to Imply Polaris to make it easier for your end users to take advantage of real-time insights.
Imply Pivot delivers the final mile for modern analytics applications
This blog is focused on how Imply Pivot delivers the final mile for building an anlaytics app. It showcases two customer examples - Twitch and ironsource.
For decades, analytics has been defined by the standard reporting and BI workflow, supported by the data warehouse. Now, 1000s of companies are realizing an expansion of analytics beyond reporting, which requires...
Apache Druid is at the heart of Imply. We’re an open source business, and that’s why we’re committed to making Druid the best open source database for modern analytics applications
When it comes to modern data analytics applications, speed is of the utmost importance. In this blog we discuss two approximation algorithms which can be used to greatly enhance speed with only a slight reduction...
The next chapter for Imply Polaris: celebrating 250+ accounts, continued innovation
Today we announced the next iteration of Imply Polaris, the fully managed Database-as-a-Service that helps you build modern analytics applications faster, cheaper, and with less effort. Since its launch in...
We obviously talk a lot about #ApacheDruid on here. But what are folks actually building with Druid? What is a modern analytics application, exactly? Let's find out
Elasticity is important, but beware the database that can only save you money when your application is not in use. The best solution will have excellent price-performance under all conditions.
Druid 0.23 – Features And Capabilities For Advanced Scenarios
Many of Druid’s improvements focus on building a solid foundation, including making the system more stable, easier to use, faster to scale, and better integrated with the rest of the data ecosystem. But for...
Apache Druid 0.23.0 contains over 450 updates, including new features, major performance enhancements, bug fixes, and major documentation improvements.
Imply Polaris is a fully managed database-as-a-service for building realtime analytics applications. John is the tech lead for the Polaris UI, known internally as the Unified App. It began with a profound question:...
There is a new category within data analytics emerging which is not centered in the world of reports and dashboards (the purview of data analysts and data scientists), but instead centered in the world of applications...
We are in the early stages of a stream revolution, as developers build modern transactional and analytic applications that use real-time data continuously delivered.
Developers and architects must look beyond query performance to understand the operational realities of growing and managing a high performance database and if it will consume their valuable time.
Building high performance logging analytics with Polaris and Logstash
When you think of querying with Apache Druid, you probably imagine queries over massive data sets that run in less than a second. This blog is about some of the things we did as a team to discover the user...
Horizontal scaling is the key to performance at scale, which is why every database claims this. You should investigate, though, to see how much effort it takes, especially compared to Apache Druid.
When you think of querying with Apache Druid, you probably imagine queries over massive data sets that run in less than a second. This blog is about some of the things we did as a team to discover the user...
Building Analytics for External Users is a Whole Different Animal
Analytics aren’t just for internal stakeholders anymore. If you’re building an analytics application for customers, then you’re probably wondering…what’s the right database backend?
Every year industry pundits predict data and analytics becoming more valuable the following year. But this doesn’t take a crystal ball to predict. There’s instead something much more interesting happening...
Today, I'm prepared to share our progress on this effort and some of our plans for the future. But before diving further into that, let's take a closer look at how Druid's core query engine executes queries,...
Product Update: SSO, Cluster level authorization, OAuth 2.0 and more security features
When you think of querying with Apache Druid, you probably imagine queries over massive data sets that run in less than a second. This blog is about some of the things we did as a team to discover the user...
When you think of querying with Apache Druid, you probably imagine queries over massive data sets that run in less than a second. This blog is about some of the things we did as a team to discover the user...
Druid Nails Cost Efficiency Challenge Against ClickHouse & Rockset
To make a long story short, we were pleased to confirm that Druid is 2 times faster than ClickHouse and 8 times faster than Rockset with fewer hardware resources!.
Unveiling Project Shapeshift Nov. 9th at Druid Summit 2021
There is a new category within data analytics emerging which is not centered in the world of reports and dashboards (the purview of data analysts and data scientists), but instead centered in the world of applications...
How we made long-running queries work in Apache Druid
When you think of querying with Apache Druid, you probably imagine queries over massive data sets that run in less than a second. This blog is about some of the things we did as a team to discover the user...
Uneven traffic flow in streaming pipelines is a common problem. Providing the right level of resources to keep up with spikes in demand is a requirement in order to deliver timely analytics.