Modernizing Rubicon Project’s Analytics Stack for Programmatic Advertising
Oct 22, 2018
Ken Lin
This is a guest post from Ken Lin, Senior Director of Product Management, and Johnny Shen, Director of Engineering, from Rubicon Project.
Rubicon Project is one of the world’s largest digital advertising exchanges and helps premium websites and mobile apps sell ads easily and safely In addition, the world’s leading agencies and brands rely on Rubicon Project’s technology to execute tens of billions of advertising transactions daily.
A core product offered by Rubicon Project is its Performance Analytics solution Performance Analytics is Rubicon Project’s flagship reporting platform and is used by thousands of external customers, publishers, and DSPs across the globe Every day, marketers, decision makers, buyers, sellers, and account managers log in to analyze and visualize their respective performance metrics, which range from ad requests, bid requests, auction rates, fill rates, CPMs, and much more.
Rubicon Project processes trillions of ad and bid requests quarterly with over 1,000 header bidding connections and 40% growth in mobile ad spend in Q2 2018 compared to Q2 2017, 70% growth in video ad spend in the first half of 2018 compared to the first half of 2017, and 300% growth of audio ad spend in Q2 2018 As Rubicon’s traffic has grown, it faced a big challenge on how to continue to scale its analytics stack to provide interactive analytics to the wide base of users.
Rubicon Project’s previous reporting platform was MySQL, which worked well when the data volume was 10% of what is received today. To power the Performance Analytics platform, Rubicon Project chose Druid as part its underlying data store and partnered with Imply to create a world-class solution for the industry.
In 2016, as Rubicon Project was looking to modernize its analytics stack with three main goals in mind: accuracy, performance, and timeliness.
Accuracy is the foundation of a reporting application Publishers and DSPs make vital business decisions and campaign adjustments based on data from Performance Analytics, which requires precise data calculation and aggregation to match finance billing data Rubicon Project’s modern analytics solution has to ensure strict accuracy of results.
Performance: Performance Analytics does not just generate static reports for users, it also allows users flexibly to explore trends and patterns in data Users can self service explanations of anomalies in reports To provide users with this experience, Rubicon Project requires queries to be returned near instantly, even when aggregating billions of message entries This allows Rubicon Project to provide users with an interactive data exploration experience through its UI.
Timeliness: Publishers, buyers, and DSP adjust their inventory, bid, and spend quickly to react to the fast pace of programmatic advertising Much of their in-moment decisions are based on past campaign results The faster data is loaded and disseminated, the faster Rubicon Project’s customers can make decisions This iterative decision making cycle pushes the digital programmatic advertising industry towards more transparency and efficient spend and purchase Hence, short SLAs on data ingestion and queries is critical for Performance Analytics.
To achieve the above goals, Rubicon Project faced several tough Engineering problems:
Huge data volumes. With strong business growth in past years, Rubicon Project’s traffic volumes have doubled within the last 12 months This added great pressure on Performance Analytics to aggregate and store trillions of raw messages.
Cost Control. Pouring money on infrastructure to resolve scaling and performance issues is a short-term solution to deal with growing business needs. Long term, controlling cost and operating within budget is critical for company success Rubicon Project required a very efficient software solution to scaling problems.
Monitoring and Alerting. Incidents are an inevitable part of dev/ops and Rubicon Projected needed monitoring tools and alerting processes to proactively identify problems and resolve issues before they become a major fire This is extremely important as Rubicon Project is in a phase of fast growth.
Rubicon Project evaluated many different technologies in the data space and chose Apache Druid (incubating) as its next generation analytics solution There are three great reasons for choosing Druid in addition to the requirements above:
Storage saving. Druid can rollup or pre-aggregate data once ingested Most of Rubicon Project’s raw level events are generated at a millisecond level but many of queries require results at a minutely, hourly, or daily level Druid provides capabilities out-of-the-box to summarize and pre-aggregate data as it is ingested In practice, Rubicon Project’s raw data is reduced 10-100x when stored in Druid.
Ad-hoc analytics. Druid excels at ad-hoc slice-and-dice queries that are critical to powering an interactive UI for Rubicon Project’s customers Reports in Performance Analytics are not static and are fully interactive and allow customers to arbitrarily drill into data to better understand trends and patterns.
Real-time and batch ingest. Druid supports both real-time and static ingest efficiently Rubicon Project can stream in live data into Druid so customers can quickly make decisions on their advertising spend, and at the same time allow the company to make bulk updates and corrections of data through Druid’s batch loading interface Druid seamlessly blends real-time and batch loads together.
Rubicon Project has partnered closely with Imply and leverages Imply’s suite of tools power Rubicon Project’s Performance Analytics solution. Today, Rubicon Project’s production Druid cluster scales horizontally, loading more than 2 TB of data per hour and over a trillion events events per day, and is used by thousands of users across the globe with an average response of <500ms.
For high performance analytics solution to large operational data, Rubicon Project encourages checking out druid.io and imply.io.
Rubicon Project is an independent, publicly-traded company (NYSE:RUBI) with fifteen offices worldwide and is headquartered in Los Angeles, California.
Other blogs you might find interesting
No records found...
Nov 15, 2023
Introducing Apache Druid 28.0.0
Apache Druid 28.0, an open-source database for real-time analytics, introduces Async queries, UNION ALL support, SQL WINDOW functions, enhanced ingestion features, including multi-Kafka topic support, and...
This blog covers the rationale, advantages, and step-by-step process for data transfer from AWS s3 to Apache Druid for faster real-time analytics and querying.
What’s new in Imply Polaris, our real-time analytics DBaaS – September 2023
Every week, we add new features and capabilities to Imply Polaris. Throughout September, we've focused on enhancing your experience as you explore trials, navigate data integration, oversee data management,...
Introducing incremental encoding for Apache Druid dictionary encoded columns
In this blog post we deep dive on a recent engineering effort: incremental encoding of STRING columns. In preliminary testing, it has shown to be quite promising at significantly reducing the size of segment...
Migrate Analytics Data from MongoDB to Apache Druid
This blog presents a concise guide on migrating data from MongoDB to Druid. It includes Python scripts to extract data from MongoDB, save it as CSV, and then ingest it into Druid. It also touches on maintaining...
How Druid Facilitates Real-Time Analytics for Mass Transit
Mass transit plays a key role in reimagining life in a warmer, more densely populated world. Learn how Apache Druid helps power data and analytics for mass transit.
Migrate Analytics Data from Snowflake to Apache Druid
This blog outlines the steps needed to migrate data from Snowflake to Apache Druid, a platform designed for high-performance analytical queries. The article covers the migration process, including Python scripts...
Apache Kafka, Flink, and Druid: Open Source Essentials for Real-Time Data Applications
Apache Kafka, Flink, and Druid, when used together, create a real-time data architecture that eliminates all these wait states. In this blog post, we’ll explore how the combination of these tools enables...
Visualizing Data in Apache Druid with the Plotly Python Library
In today's data-driven world, making sense of vast datasets can be a daunting task. Visualizing this data can transform complicated patterns into actionable insights. This blog delves into the utilization of...
Bringing Real-Time Data to Solar Power with Apache Druid
In a rapidly warming world, solar power is critical for decarbonization. Learn how Apache Druid empowers a solar equipment manufacturer to provide real-time data to users, from utility plant operators to homeowners
When to Build (Versus Buy) an Observability Application
Observability is the key to software reliability. Here’s how to decide whether to build or buy your own solution—and why Apache Druid is a popular database for real-time observability
How Innowatts Simplifies Utility Management with Apache Druid
Data is a key driver of progress and innovation in all aspects of our society and economy. By bringing digital data to physical hardware, the Internet of Things (IoT) bridges the gap between the online and...
Three Ways to Use Apache Druid for Machine Learning Workflows
An excellent addition to any machine learning environment, Apache Druid® can facilitate analytics, streamline monitoring, and add real-time data to operations and training
Apache Druid® is an open-source distributed database designed for real-time analytics at scale. Apache Druid 27.0 contains over 350 commits & 46 contributors. This release's focus is on stability and scaling...
Unleashing Real-Time Analytics in APJ: Introducing Imply Polaris on AWS AP-South-1
Imply, the company founded by the original creators of Apache Druid, has exciting news for developers in India seeking to build real-time analytics applications. Introducing Imply Polaris, a powerful database-as-a-Service...
In this guide, we will walk you through creating a very simple web app that shows a different embedded chart for each user selected from a drop-down. While this example is simple it highlights the possibilities...
Automate Streaming Data Ingestion with Kafka and Druid
In this blog post, we explore the integration of Kafka and Druid for data stream management and analysis, emphasizing automatic topic detection and ingestion. We delve into the creation of 'Ingestion Spec',...
This guide explores configuring Apache Druid to receive Kafka streaming messages. To demonstrate Druid's game-changing automatic schema discovery. Using a real-world scenario where data changes are handled...
Imply Polaris, our ever-evolving Database-as-a-Service, recently focused on global expansion, enhanced security, and improved data handling and visualization. This fully managed cloud service, based on Apache...
Introducing hands-on developer tutorials for Apache Druid
The objective of this blog is to introduce the new set of interactive tutorials focused on the Druid API fundamentals. These tutorials are available as Jupyter Notebooks and can be downloaded as a Docker container.
In this blog article I’ll unpack schema auto-discovery, a new feature now available in Druid 26.0, that enables Druid to automatically discover data fields and data types and update tables to match changing...
Druid now has a new function, Unnest. Unnest explodes an array into individual elements. This blog contains design methodology and examples for this new Unnest function both from native and SQL binding perspectives.
What’s new in Imply Polaris – Our Real-Time Analytics DBaaS
Every week we add new features and capabilities to Imply Polaris. This month, we’ve expanded security capabilities, added new query functionality, and made it easier to monitor your service with your preferred...
Apache Druid® 26.0, an open-source distributed database for real-time analytics, has seen significant improvements with 411 new commits, a 40% increase from version 25.0. The expanded contributor base of 60...
How to Build a Sentiment Analysis Application with ChatGPT and Druid
Leveraging ChatGPT for sentiment analysis, when combined with Apache Druid, offers results from large data volumes. This integration is easily achievable, revealing valuable insights and trends for businesses...
In this blog, we will compare Snowflake and Druid. It is important to note that reporting data warehouses and real-time analytics databases are different domains. Choosing the right tool for your specific requirements...
Learn how to achieve sub-second responses with Apache Druid
Learn how to achieve sub-second responses with Apache Druid. This article is an in-depth look at how Druid resolves queries and describes data modeling techniques that improve performance.
Apache Druid uses load rules to manage the ageing of segments from one historical tier to another and finally to purge old segments from the cluster. In this article, we’ll show what happens when you make...
Real-Time Analytics: Building Blocks and Architecture
This blog identifies the key technical considerations for real-time analytics. It answers what is the right data architecture and why. It spotlights the technologies used at Confluent, Reddit, Target and 1000s...
What’s new in Imply Polaris – Our Real-Time Analytics DBaaS
This blog explains some of the new features, functionality and connectivity added to Imply Polaris over the last two months. We've expanded ingestion capabilities, simplified operations and increased reliability...
Wow, that was easy – Up and running with Apache Druid
The objective of this blog is to provide a step-by-step guide on setting up Druid locally, including the use of SQL ingestion for importing data and executing analytical queries.
Tales at Scale Podcast Kicks off with the Apache Druid Origin Story
Tales at Scale cracks open the world of analytics projects and shares stories from developers and engineers who are building analytics applications or working within the real-time data space. One of the key...
Real-time Analytics Database uses partitioning and pruning to achieve its legendary performance
Apache Druid uses partitioning (splitting data) and pruning (selecting subset of data) to achieve its legendary performance. Learn how to use the CLUSTERED BY clause during ingestion for performance and high...
Easily embed analytics into your own apps with Imply’s DBaaS
This blog explains how developers can leverage Imply Polaris to embed robust visualization options directly into their own applications without them having to build a UI. This is super important because consuming...
Building an Event Analytics Pipeline with Confluent Cloud and Imply’s real time DBaaS, Polaris
Learn how to set up a pipeline that generates a simulated clickstream event stream and sends it to Confluent Cloud, processes the raw clickstream data using managed ksqlDB in Confluent Cloud, delivers the processed...
We are excited to announce the availability of Imply Polaris in Europe, specifically in AWS eu-central-1 region based in Frankfurt. Since its launch in March 2022, Imply Polaris, the fully managed Database-as-a-Service...
Should You Build or Buy Security Analytics for SecOps?
When should you build—or buy—a security analytics platform for your environment? Here are some common considerations—and how Apache Druid is the ideal foundation for any in-house security solution.
Combating financial fraud and money laundering at scale with Apache Druid
Learn how Apache Druid enables financial services firms and FinTech companies to get immediate insights from petabytes-plus data volumes for anti-fraud and anti-money laundering compliance.
This is a what's new to Imply in Dec 2022. We’ve added two new features to Imply Polaris to make it easier for your end users to take advantage of real-time insights.
Imply Pivot delivers the final mile for modern analytics applications
This blog is focused on how Imply Pivot delivers the final mile for building an anlaytics app. It showcases two customer examples - Twitch and ironsource.
For decades, analytics has been defined by the standard reporting and BI workflow, supported by the data warehouse. Now, 1000s of companies are realizing an expansion of analytics beyond reporting, which requires...
Apache Druid is at the heart of Imply. We’re an open source business, and that’s why we’re committed to making Druid the best open source database for modern analytics applications
When it comes to modern data analytics applications, speed is of the utmost importance. In this blog we discuss two approximation algorithms which can be used to greatly enhance speed with only a slight reduction...
The next chapter for Imply Polaris: celebrating 250+ accounts, continued innovation
Today we announced the next iteration of Imply Polaris, the fully managed Database-as-a-Service that helps you build modern analytics applications faster, cheaper, and with less effort. Since its launch in...
We obviously talk a lot about #ApacheDruid on here. But what are folks actually building with Druid? What is a modern analytics application, exactly? Let's find out
Elasticity is important, but beware the database that can only save you money when your application is not in use. The best solution will have excellent price-performance under all conditions.
Druid 0.23 – Features And Capabilities For Advanced Scenarios
Many of Druid’s improvements focus on building a solid foundation, including making the system more stable, easier to use, faster to scale, and better integrated with the rest of the data ecosystem. But for...
Apache Druid 0.23.0 contains over 450 updates, including new features, major performance enhancements, bug fixes, and major documentation improvements.
Imply Polaris is a fully managed database-as-a-service for building realtime analytics applications. John is the tech lead for the Polaris UI, known internally as the Unified App. It began with a profound question:...
There is a new category within data analytics emerging which is not centered in the world of reports and dashboards (the purview of data analysts and data scientists), but instead centered in the world of applications...
We are in the early stages of a stream revolution, as developers build modern transactional and analytic applications that use real-time data continuously delivered.
Developers and architects must look beyond query performance to understand the operational realities of growing and managing a high performance database and if it will consume their valuable time.
Building high performance logging analytics with Polaris and Logstash
When you think of querying with Apache Druid, you probably imagine queries over massive data sets that run in less than a second. This blog is about some of the things we did as a team to discover the user...
Horizontal scaling is the key to performance at scale, which is why every database claims this. You should investigate, though, to see how much effort it takes, especially compared to Apache Druid.
When you think of querying with Apache Druid, you probably imagine queries over massive data sets that run in less than a second. This blog is about some of the things we did as a team to discover the user...
Building Analytics for External Users is a Whole Different Animal
Analytics aren’t just for internal stakeholders anymore. If you’re building an analytics application for customers, then you’re probably wondering…what’s the right database backend?
After over 30 years of working with data analytics, we’ve been witness (and sometimes participant) to three major shifts in how we find insights from data - and now we’re looking at the fourth.
Every year industry pundits predict data and analytics becoming more valuable the following year. But this doesn’t take a crystal ball to predict. There’s instead something much more interesting happening...
Today, I'm prepared to share our progress on this effort and some of our plans for the future. But before diving further into that, let's take a closer look at how Druid's core query engine executes queries,...
Product Update: SSO, Cluster level authorization, OAuth 2.0 and more security features
When you think of querying with Apache Druid, you probably imagine queries over massive data sets that run in less than a second. This blog is about some of the things we did as a team to discover the user...
When you think of querying with Apache Druid, you probably imagine queries over massive data sets that run in less than a second. This blog is about some of the things we did as a team to discover the user...
Druid Nails Cost Efficiency Challenge Against ClickHouse & Rockset
To make a long story short, we were pleased to confirm that Druid is 2 times faster than ClickHouse and 8 times faster than Rockset with fewer hardware resources!.
Unveiling Project Shapeshift Nov. 9th at Druid Summit 2021
There is a new category within data analytics emerging which is not centered in the world of reports and dashboards (the purview of data analysts and data scientists), but instead centered in the world of applications...
How we made long-running queries work in Apache Druid
When you think of querying with Apache Druid, you probably imagine queries over massive data sets that run in less than a second. This blog is about some of the things we did as a team to discover the user...