How we enabled the “Go Fast” button on TopN queries: Hint: we used vectorized virtual columns (which is new in Apache Druid 0.20.0)
May 18, 2021
Suneet Saldanha
Do you want your queries to run 25x faster? Of course you do! Keep reading to learn how.
Apache Druid is a fast, modern analytics database designed for workflows where fast, ad-hoc analytics, instant data visibility, or supporting high concurrency is important. Multiple factors contribute to Druid’s impressive querying speed. Recently, I explained how Apache Druid takes advantage of per-segment result caches as one part of a strategy to deal with high-concurrency workload. Now, let’s talk about raw speed!
To illustrate what we found, let’s use a fictitious example that is similar to a real-world problem. Let’s imagine a platform that manages a two-sided marketplace. Sellers and buyers come to the marketplace and trade goods. Based on platform demand, a surge price is factored into the total sales price. So, the total amount a seller makes on this platform is calculated as base_price * surge at the time of the purchase.
__time
seller_id
country
base_price
surge
April 5 2021 11:20:36
123987
CAN
12.00
1.8
April 5 2021 11:22:05
124358
USA
58.23
1
April 6 2021 11:30:28
123987
CAN
20.00
1.34
The above table illustrates what the data model might look like. Each row represents a transaction that takes place on the platform. We record the seller, the base_price, and the surge rate at the time of the purchase.
As the business behind the two-sided marketplace, we want to know, in real time, the top 100 sellers, excluding surge pricing, in each country [query1]. We also want to be able to see the top countries by total sales made [query 2]. To achieve this, you might write the following queries:
-- [query1] TOP sellers and countries by base sales
SELECT seller_id, country, sum(base_price) as total_price FROM purchases ORDER BY total_price desc LIMIT 100
-- [query2] TOP 20 countries by total sales
SELECT country, sum(base_price * surge) as total_price FROM purchases ORDER BY total_price desc LIMIT 20
Druid converts these two queries, respectively, into a GroupBy query for the top sellers and countries and a TopN query for the top countries by sales.
Conceptually, think of a TopN query as an approximate GroupBy query over a single dimension with an ordering spec and a limit. Because of these restrictions, in general, this query should be faster than a GroupBy query over the same data.
Query1 might intuitively appear more computationally intensive than query2 since Query1 is operating on multiple columns. However, we noticed that query1 finished in about 1 second while query2 took almost 17 seconds. To start looking into this discrepancy, we started by running an EXPLAIN PLAN for the two queries.
EXPLAIN PLAN FOR SELECT country, sum(base_price * surge) as total_price FROM purchases ORDER BY total_price DESC LIMIT 20
Running this command showed us that Druid executes a GroupBy query for query1 and a TopN query for query2. This was our first clue! By reading the Apache Druid docs, we found out that GroupBy queries are vectorized when TopN queries have not yet been.
Therefore, we decided to rewrite query2 to a GroupBy query by removing the limit from the SQL query being sent to Druid and applying the limit in the application code instead. We knew this would be okay, since, according to Wikipedia, there are only 195 countries. That means the overhead of running a GroupBy query on every value in the country column is not substantial.
We were confident that this would get us sub-second response time on query2. Unfortunately, the query time was still around 17 seconds. The results of the `EXPLAIN PLAN` command showed that this query was now being planned into a GroupBy query. In other words, the only difference between the two queries was that query1 was just adding a single column, whereas query2 was adding the product of two columns. This yielded our next experiment! What if we only needed to sum the base_price? BAM! That query only took 0.6 seconds.
In the Apache Druid 0.20 release notes, there is a section that calls out vectorization support for expression virtual columns. Now, we had proof that when this query runs with the vectorized query engine, it can run in less than one second. So, we decided to enable this feature by adding `“vectorizeVirtualColumns”: “true”` to the query context and running the original query2 again except without a LIMIT. The query took 0.63 seconds to run, down from about 17 seconds before — that’s a 25x improvement!
Key takeaways:
Vectorized GroupBy and timeseries are the default starting in Apache Druid 0.19.0. If you’re on an older version, consider enabling this feature by setting vectorize: true in the queryContext. Or better yet, upgrade to the latest and greatest!
If you have queries that use expressions described in here, starting in Apache Druid 0.20.0, you should try the query context vectorizeVirtualColumns to see if your queries can take advantage of these improvements.
BONUS TIP: use vectorize: force in the queryContext to validate that your queries are in fact running with the vectorized query engine.
If you are running a TopN query on a column with a low cardinality, consider rewriting your query to a GroupBy query to take advantage of the vectorized query engine. You can do this by disabling the limit—this is ok if you know the column has a low cardinality—or by grouping on more than 1 column.
Use EXPLAIN PLAN FOR to see what Druid is actually doing to run the SQL query that is being used.
If you’re using the Apache Druid web console in your testing, check the setting of the `Auto limit` toggle. Adding a limit to a query can change the underlying query that Druid runs.
Does this type of performance hunting sound interesting to you? Do you want to help build the fastest analytics database out there, using techniques like vectorized processing that helped us realize this speedup? My team is looking for engineers to join us on this mission!
Alternatively, if you have ideas, or patches you’d like to share with us, send them our way on Github or toss ideas around with others in the Apache Druid community.
The fine print: While the scenario described in this post is fictional, the query performance numbers are based on a real datasource with almost 10 billion rows running on a test cluster with 64 data processing cores.
Note that this technique is not a silver bullet: A vectorized GroupBy query is not always faster than a non-vectorized TopN. Be especially careful of running a GroupBy query without a limit for high cardinality columns.
Other blogs you might find interesting
No records found...
Jun 01, 2023
Introducing Schema Auto-Discovery in Apache Druid
In this blog article I’ll unpack schema auto-discovery, a new feature now available in Druid 26.0, that enables Druid to automatically discover data fields and data types and update tables to match changing...
Apache Druid® 26.0, an open-source distributed database for real-time analytics, has seen significant improvements with 411 new commits, a 40% increase from version 25.0. The expanded contributor base of 60...
Should You Build or Buy Security Analytics for SecOps?
When should you build—or buy—a security analytics platform for your environment? Here are some common considerations—and how Apache Druid is the ideal foundation for any in-house security solution.
Druid now has a new function, Unnest. Unnest explodes an array into individual elements. This blog contains design methodology and examples for this new Unnest function both from native and SQL binding perspectives.
What’s new in Imply Polaris – Our Real-Time Analytics DBaaS
Every week we add new features and capabilities to Imply Polaris. This month, we’ve expanded security capabilities, added new query functionality, and made it easier to monitor your service with your preferred...
How to Build a Sentiment Analysis Application with ChatGPT and Druid
Leveraging ChatGPT for sentiment analysis, when combined with Apache Druid, offers results from large data volumes. This integration is easily achievable, revealing valuable insights and trends for businesses...
In this blog, we will compare Snowflake and Druid. It is important to note that reporting data warehouses and real-time analytics databases are different domains. Choosing the right tool for your specific requirements...
Learn how to achieve sub-second responses with Apache Druid
Learn how to achieve sub-second responses with Apache Druid. This article is an in-depth look at how Druid resolves queries and describes data modeling techniques that improve performance.
Apache Druid uses load rules to manage the ageing of segments from one historical tier to another and finally to purge old segments from the cluster. In this article, we’ll show what happens when you make...
Real-Time Analytics: Building Blocks and Architecture
This blog identifies the key technical considerations for real-time analytics. It answers what is the right data architecture and why. It spotlights the technologies used at Confluent, Reddit, Target and 1000s...
What’s new in Imply Polaris – Our Real-Time Analytics DBaaS
This blog explains some of the new features, functionality and connectivity added to Imply Polaris over the last two months. We've expanded ingestion capabilities, simplified operations and increased reliability...
Wow, that was easy – Up and running with Apache Druid
The objective of this blog is to provide a step-by-step guide on setting up Druid locally, including the use of SQL ingestion for importing data and executing analytical queries.
Tales at Scale Podcast Kicks off with the Apache Druid Origin Story
Tales at Scale cracks open the world of analytics projects and shares stories from developers and engineers who are building analytics applications or working within the real-time data space. One of the key...
Real-time Analytics Database uses partitioning and pruning to achieve its legendary performance
Apache Druid uses partitioning (splitting data) and pruning (selecting subset of data) to achieve its legendary performance. Learn how to use the CLUSTERED BY clause during ingestion for performance and high...
Easily embed analytics into your own apps with Imply’s DBaaS
This blog explains how developers can leverage Imply Polaris to embed robust visualization options directly into their own applications without them having to build a UI. This is super important because consuming...
Building an Event Analytics Pipeline with Confluent Cloud and Imply’s real time DBaaS, Polaris
Learn how to set up a pipeline that generates a simulated clickstream event stream and sends it to Confluent Cloud, processes the raw clickstream data using managed ksqlDB in Confluent Cloud, delivers the processed...
We are excited to announce the availability of Imply Polaris in Europe, specifically in AWS eu-central-1 region based in Frankfurt. Since its launch in March 2022, Imply Polaris, the fully managed Database-as-a-Service...
This is a what's new to Imply in Dec 2022. We’ve added two new features to Imply Polaris to make it easier for your end users to take advantage of real-time insights.
Combating financial fraud and money laundering at scale with Apache Druid
Learn how Apache Druid enables financial services firms and FinTech companies to get immediate insights from petabytes-plus data volumes for anti-fraud and anti-money laundering compliance.
Imply Pivot delivers the final mile for modern analytics applications
This blog is focused on how Imply Pivot delivers the final mile for building an anlaytics app. It showcases two customer examples - Twitch and ironsource.
For decades, analytics has been defined by the standard reporting and BI workflow, supported by the data warehouse. Now, 1000s of companies are realizing an expansion of analytics beyond reporting, which requires...
Apache Druid is at the heart of Imply. We’re an open source business, and that’s why we’re committed to making Druid the best open source database for modern analytics applications
Tales at Scale Podcast: Who Really Needs Real-Time Data?
Gwen Shapira, co-founder and CPO of Nile joins us to help define real-time data, discuss who needs it (and who probably doesn't) and how to not build yourself into a corner with your architecture. When you're...
When it comes to modern data analytics applications, speed is of the utmost importance. In this blog we discuss two approximation algorithms which can be used to greatly enhance speed with only a slight reduction...
The next chapter for Imply Polaris: celebrating 250+ accounts, continued innovation
Today we announced the next iteration of Imply Polaris, the fully managed Database-as-a-Service that helps you build modern analytics applications faster, cheaper, and with less effort. Since its launch in...
We obviously talk a lot about #ApacheDruid on here. But what are folks actually building with Druid? What is a modern analytics application, exactly? Let's find out
Elasticity is important, but beware the database that can only save you money when your application is not in use. The best solution will have excellent price-performance under all conditions.
Druid 0.23 – Features And Capabilities For Advanced Scenarios
Many of Druid’s improvements focus on building a solid foundation, including making the system more stable, easier to use, faster to scale, and better integrated with the rest of the data ecosystem. But for...
Apache Druid 0.23.0 contains over 450 updates, including new features, major performance enhancements, bug fixes, and major documentation improvements.
Imply Polaris is a fully managed database-as-a-service for building realtime analytics applications. John is the tech lead for the Polaris UI, known internally as the Unified App. It began with a profound question:...
There is a new category within data analytics emerging which is not centered in the world of reports and dashboards (the purview of data analysts and data scientists), but instead centered in the world of applications...
We are in the early stages of a stream revolution, as developers build modern transactional and analytic applications that use real-time data continuously delivered.
Developers and architects must look beyond query performance to understand the operational realities of growing and managing a high performance database and if it will consume their valuable time.
Building high performance logging analytics with Polaris and Logstash
When you think of querying with Apache Druid, you probably imagine queries over massive data sets that run in less than a second. This blog is about some of the things we did as a team to discover the user...
Horizontal scaling is the key to performance at scale, which is why every database claims this. You should investigate, though, to see how much effort it takes, especially compared to Apache Druid.
When you think of querying with Apache Druid, you probably imagine queries over massive data sets that run in less than a second. This blog is about some of the things we did as a team to discover the user...
Building Analytics for External Users is a Whole Different Animal
Analytics aren’t just for internal stakeholders anymore. If you’re building an analytics application for customers, then you’re probably wondering…what’s the right database backend?
After over 30 years of working with data analytics, we’ve been witness (and sometimes participant) to three major shifts in how we find insights from data - and now we’re looking at the fourth.
Every year industry pundits predict data and analytics becoming more valuable the following year. But this doesn’t take a crystal ball to predict. There’s instead something much more interesting happening...
Today, I'm prepared to share our progress on this effort and some of our plans for the future. But before diving further into that, let's take a closer look at how Druid's core query engine executes queries,...
Product Update: SSO, Cluster level authorization, OAuth 2.0 and more security features
When you think of querying with Apache Druid, you probably imagine queries over massive data sets that run in less than a second. This blog is about some of the things we did as a team to discover the user...
When you think of querying with Apache Druid, you probably imagine queries over massive data sets that run in less than a second. This blog is about some of the things we did as a team to discover the user...
Druid Nails Cost Efficiency Challenge Against ClickHouse & Rockset
To make a long story short, we were pleased to confirm that Druid is 2 times faster than ClickHouse and 8 times faster than Rockset with fewer hardware resources!.
Unveiling Project Shapeshift Nov. 9th at Druid Summit 2021
There is a new category within data analytics emerging which is not centered in the world of reports and dashboards (the purview of data analysts and data scientists), but instead centered in the world of applications...
How we made long-running queries work in Apache Druid
When you think of querying with Apache Druid, you probably imagine queries over massive data sets that run in less than a second. This blog is about some of the things we did as a team to discover the user...
Uneven traffic flow in streaming pipelines is a common problem. Providing the right level of resources to keep up with spikes in demand is a requirement in order to deliver timely analytics.
Community Discoveries: multi-value dimensions in Apache Druid
Hellmar Becker is an Imply solutions engineer based in Germany, where he has been delving into the nooks-and-crannies of multi-valued dimension support in Druid. In this interview, Hellmar explains why...
Community Spotlight: Apache Pulsar and Apache Druid get close…
The community team at Imply spoke with an Apache Pulsar community member, Giannis Polyzos, about how collaboration between open source communities generates great things, and more specifically, about how...
Meet the team: Abhishek Agarwal, engineering lead in India
Abhishek is Imply’s first engineer in India. We spoke to him about setting up our operations in Bangalore and asked what kind of local talent the company is looking for.
Jihoon Son is a software engineer at Imply who works on Apache Druid®. He explains what drew him to Imply five years ago and why he’s even more inspired by the company today.
Community Spotlight: Sparking that connection with Apache Druid
It’s been nearly 10 years now since Druid was open sourced “to help other organizations solve their real-time data analysis and processing needs”. This has happened not because of one person or one...
Community Spotlight: Augmented analytics on business metrics by Cuebook with Apache Druid®
Cuebook is putting you, decision-maker, back in the driving seat, powered by Apache Druid®. In this interview with their founder and CEO, we learn their reason for being, their open source Cuelake tooling,...
Empowering all types of users to analyze data incredibly quickly from wherever it sits provides huge value to organizations. Citizen data scientists and decision scientists are able to make empirically-backed,...
Our vision at Imply has always been to create a new category for data analytics, analytics-in-motion, and enable organizations to unlock workflows they’ve never been able to do before. With the most recent...
Community Spotlight: Avesta powers next-generation applications with Apache Druid
When considering various real-time analytics solutions, Apache Druid quickly became the clear choice: Avesta uses only open-source products and libraries. And today, they’re using Druid as a central component...
The traditional BI workflow starts with a strategic question. Such a question is not too time-sensitive—days or weeks is okay—and the question is pretty complex to answer.
How Sift is accurately identifying anomalies in real time by using Imply Druid
As the leader in Digital Trust & Safety and a pioneer in using machine learning to fight fraud, Sift regularly deploys new machine learning models into production. Sift’s customers use the scores generated...
Making the impossible, possible: A GameAnalytics case study
We’ve had the pleasure of speaking with Ioana Hreninciuc, CEO of GameAnalytics, to learn just how they use Imply to make their next-generation data stack possible.
Make your real-time dashboards blazing fast with per-segment caching
Imagine a scenario where Druid is collecting metrics about a huge microservices application —there’s a continuous stream of metrics coming in about the different services from this application.
Community Spotlight: smart advertising from Sage+Archer + Apache Druid
Out-of-home advertising has changed. Gone are static, uncompromisingly homogenous posters, replaced instead with bright and fluid installations. Installations that make smart decisions about what and when...
Some time ago, Dana Assa and I wrote a detailed blog post about Data retention and deletion in Apache Druid. Our intention was to help Druid database users and provide guidance on how to control the TTL...
Hawk is the first independent European platform to offer a transparent and technological advertising experience across all screens: Desktop, Mobile, CTV, DOOH & Digital Audio.
If you thought you had perfect rollups before, you might have been wrong!
In Apache Druid, you can roll up duplicate rows into a single row to optimize storage and improve query performance. Rollup pre-aggregates data at ingestion time, which reduces the amount of data the query...
Imply’s real-time analytics maturity model to create better customer experiences
Imply’s real-time Druid database today powers the analytics needs of over 100 customers across industries such as Banking, Retail, Manufacturing, and Technology. We have observed that the majority of prospects...
What I wish I knew about Imply when I was developing in-house analytics
Like a lot of engineers at Imply, I got my start here after having worked on an analytics solution for a previous employer. In my case, it was a large non-tech company going through a digital transformation.
Imply allows Kueez's data analysts, content editors, and growth teams to optimize their campaigns in real-time. With open-source Druid, they struggled to keep their system up and running, their queries were...