Column stores such as Druid have the ability to store data in individual columns instead of rows, and can apply different compression algorithms to different types of columns. With the Druid 0.9.2 release, Druid has added additional column compression methods for longs to significantly improve query performance in certain use cases. In this blog post, we’ll highlight how these various compression methods impact data storage size and query performance.
To illustrate these new methods, let’s first consider the example event data set shown below:
Timestamp
User
Country
Added
Deleted
Delta
1471904529
A
C
1274
0
1274
1471904530
A
O
27
0
27
1471904531
B
U
1186
1977
-791
1471904532
C
N
4
557
-553
1471904533
D
T
7
0
7
1471904534
E
R
9956
412
9544
This data set consists of a timestamp column, a set of string columns (User,Country) that queries frequently group and filter on called “dimensions”, and a set of numeric columns (Added, Deleted, and Delta) that queries often scan and aggregate called “metrics”. In previous literature, we’ve covered what compression and indexing algorithms we apply to dimensions. In this blog post, we’ll focus on our recent improvements for long columns.
Existing Compression Strategies
In our example above, each long takes 8 bytes to store. For a 5,000,000 row table, an uncompressed column would require roughly 40MB of space. Prior to 0.9.2, Druid only leveraged lz4 and lzf compression for longs.
Compression is done by dividing a column into blocks of a given size (currently 0x10000 bytes, or 8192 longs). Each block is compressed and persisted to disk.These compressed columns are memory-mapped, so to read a value in a column, the block that contains the value must be loaded into memory and decompressed.
An inefficiency arises in that we must decompress the entire block even if we only need to read a small number of values within a block, for example, if we are filtering the data. The overhead for decompressing and copying a block from disk to memory is the same as if you were to read all the values in the block.
A natural improvement here is to use a compression technique that allows for direct access from file so we don’t need to do unnecessary block decompression and byte copying to access sparse data.
Direct Access Strategies
To allow direct data access, an important feature we must have is the ability to quickly access the block of data that contains the values we seek, or otherwise known as an index into our data. A simple way to achieve this requirement is to ensure all blocks, and hence, all values in the blocks, are the same length. However, long values don’t always require 8 bytes for storage.Using 8 bytes to store a value such as 0x1 is waste. Thus, to efficiently store values, we’ve adopted two strategies from Apache Lucene: delta and table compression. Delta compression finds the smallest value in a set of longs and stores every other value as offset to the smallest value, while table compression maps all unique values to an index and stores the index. These compression algorithms are shown below:
Both strategies have their limitations. Delta compression cannot handle data with offsets that exceed the maximum long value, and table compression cannot handle high cardinality data as storing the lookup would be costly. Given that choosing a format is conditional, we’ve introduced an auto strategy that scans the data for its maximum offset and cardinality, and determines whether to use delta, table, or none compression.
Trade offs
The graph below compares the auto, lz4, and none compression strategies using generated data sets with 5,000,000 values each.
Data Distributions
enumerated : values are from only a few selections, with probability heavily skewed towards one value
zipfLow : zipf distribution between 0 to 1000 with low exponent
zipfHigh : zipf distribution between 0 to 1000 with high exponent
uniform : uniform distribution between 0 to 1000
sequential : sequential values starting from a timestamp
The table below shows the bits per value for the auto strategy:
Enumerate
ZipfLow
ZipfHigh
Sequential
Uniform
4
12
8
24
12
Please note that since the none strategy doesn’t perform any compression, its size is the same for all data distributions. The auto size is directly proportional to the bits per value. lz4 performs very well for the enumerate and zipfHigh data distributions, since these distributions contain the most repeating values.
Below we illustrate performance results for sequentially accessing all values once:
Again, the none strategy has the same performance across all distributions, since it always reads 8 byte long values. The auto strategy performance is directly proportional to the performance of the corresponding bits per value on the graph above. lz4 performance is mostly dependent on the decompression speed for the data set, since the reading is always done on the 8 byte values.
Below are the performance results for sequentially accessing values while skipping randomly between 0 to 2000 values on each read:
Here we can see how direct access strategies (barely visible) greatly outperform block based strategies for sparse reads.
Combining Strategies
When comparing compression techniques such as lz4 to delta and table, it is important to distinguish that lz4 can operates on blocks of bytes without any insight on the context, while delta/table compression (with variable size values) requires knowledge of the data.
We can integrate these different compression together and leverage multi-stage compression, where we can perform a byte level compression such as lz4 first, and then use a type specific compression such as auto after.
In Druid, we’ve decided to name byte level compressions such as lz4 “compression”, and data level compressions such as delta/table “encoding”.Compression strategies include lz4, lzF, and none. Encoding strategies include auto, which chooses between delta and table encoding formats, and longs, which always store a long as 8 bytes.
Our results with lz4 compression and auto encoding is shown below:
Looking at the results, it might seem strange that lz4 + auto performs so much better than lz4 + longs for skipping data, as the file size and performance for continuous data is comparable. This can be explained by breaking down the total reading time in the block layout strategy, which consist of lz4 decompression + Byte Buffer copying + reading decompressed values. lz4 + auto has better performance for decompression, while lz4 + longs is faster at accessing data.When reading continuous data, these differences more or less cancel out, causing performance between the two strategies to be similar. When reading sparse data, the accessing data portion is basically gone, and the decompression time difference is shown.
One interesting thing to note is what would happen if each value were read multiple times, for example if a query required multiple aggregations on the same column. In such a case, the reading performance would be much more significant, and lz4 + longs would have better performance than lz4 + auto, as shown below:
Recommendations
Unfortunately, there is no one compression and encoding combination that performs the best in all scenarios. The choice is highly dependant on the value distribution of ingested data, storage vs. performance requirements, and issued queries. However, we do recommend four combinations depending on the use case:
lz4 + longs (default) : good compression size for most cases, worst performance for heavily filtered query, good performance if the column is used by multiple aggregators that fully scan the data
lz4 + auto : average between lz4 + longs and none + auto. Occasionally offers better compression than lz4 + longs, and usually better compression than none + auto. This choice is better for filtered queries compared to lz4 + longs, and worse for queries that have multiple aggregators for the same column.
none + auto : offers better compression compared to none + longs, but much worse compression compared to lz4 for highly repetitive data. Good performance for reading in general.
none + longs : requires the most storage space (sometimes magnitudes higher than choices for highly repetitive data), but almost always performs better for all queries.
Finally, as part of this work, we’ve created a Druid tool that can scan segments and benchmark different compression options. You can use it via:
This blog covers the rationale, advantages, and step-by-step process for data transfer from AWS s3 to Apache Druid for faster real-time analytics and querying.
What’s new in Imply Polaris, our real-time analytics DBaaS – September 2023
Every week, we add new features and capabilities to Imply Polaris. Throughout September, we've focused on enhancing your experience as you explore trials, navigate data integration, oversee data management,...
Introducing incremental encoding for Apache Druid dictionary encoded columns
In this blog post we deep dive on a recent engineering effort: incremental encoding of STRING columns. In preliminary testing, it has shown to be quite promising at significantly reducing the size of segment...
Migrate Analytics Data from MongoDB to Apache Druid
This blog presents a concise guide on migrating data from MongoDB to Druid. It includes Python scripts to extract data from MongoDB, save it as CSV, and then ingest it into Druid. It also touches on maintaining...
How Druid Facilitates Real-Time Analytics for Mass Transit
Mass transit plays a key role in reimagining life in a warmer, more densely populated world. Learn how Apache Druid helps power data and analytics for mass transit.
Migrate Analytics Data from Snowflake to Apache Druid
This blog outlines the steps needed to migrate data from Snowflake to Apache Druid, a platform designed for high-performance analytical queries. The article covers the migration process, including Python scripts...
Apache Kafka, Flink, and Druid: Open Source Essentials for Real-Time Data Applications
Apache Kafka, Flink, and Druid, when used together, create a real-time data architecture that eliminates all these wait states. In this blog post, we’ll explore how the combination of these tools enables...
Visualizing Data in Apache Druid with the Plotly Python Library
In today's data-driven world, making sense of vast datasets can be a daunting task. Visualizing this data can transform complicated patterns into actionable insights. This blog delves into the utilization of...
Bringing Real-Time Data to Solar Power with Apache Druid
In a rapidly warming world, solar power is critical for decarbonization. Learn how Apache Druid empowers a solar equipment manufacturer to provide real-time data to users, from utility plant operators to homeowners
When to Build (Versus Buy) an Observability Application
Observability is the key to software reliability. Here’s how to decide whether to build or buy your own solution—and why Apache Druid is a popular database for real-time observability
How Innowatts Simplifies Utility Management with Apache Druid
Data is a key driver of progress and innovation in all aspects of our society and economy. By bringing digital data to physical hardware, the Internet of Things (IoT) bridges the gap between the online and...
Three Ways to Use Apache Druid for Machine Learning Workflows
An excellent addition to any machine learning environment, Apache Druid® can facilitate analytics, streamline monitoring, and add real-time data to operations and training
Apache Druid® is an open-source distributed database designed for real-time analytics at scale. Apache Druid 27.0 contains over 350 commits & 46 contributors. This release's focus is on stability and scaling...
Unleashing Real-Time Analytics in APJ: Introducing Imply Polaris on AWS AP-South-1
Imply, the company founded by the original creators of Apache Druid, has exciting news for developers in India seeking to build real-time analytics applications. Introducing Imply Polaris, a powerful database-as-a-Service...
In this guide, we will walk you through creating a very simple web app that shows a different embedded chart for each user selected from a drop-down. While this example is simple it highlights the possibilities...
Automate Streaming Data Ingestion with Kafka and Druid
In this blog post, we explore the integration of Kafka and Druid for data stream management and analysis, emphasizing automatic topic detection and ingestion. We delve into the creation of 'Ingestion Spec',...
This guide explores configuring Apache Druid to receive Kafka streaming messages. To demonstrate Druid's game-changing automatic schema discovery. Using a real-world scenario where data changes are handled...
Imply Polaris, our ever-evolving Database-as-a-Service, recently focused on global expansion, enhanced security, and improved data handling and visualization. This fully managed cloud service, based on Apache...
Introducing hands-on developer tutorials for Apache Druid
The objective of this blog is to introduce the new set of interactive tutorials focused on the Druid API fundamentals. These tutorials are available as Jupyter Notebooks and can be downloaded as a Docker container.
In this blog article I’ll unpack schema auto-discovery, a new feature now available in Druid 26.0, that enables Druid to automatically discover data fields and data types and update tables to match changing...
Druid now has a new function, Unnest. Unnest explodes an array into individual elements. This blog contains design methodology and examples for this new Unnest function both from native and SQL binding perspectives.
What’s new in Imply Polaris – Our Real-Time Analytics DBaaS
Every week we add new features and capabilities to Imply Polaris. This month, we’ve expanded security capabilities, added new query functionality, and made it easier to monitor your service with your preferred...
Apache Druid® 26.0, an open-source distributed database for real-time analytics, has seen significant improvements with 411 new commits, a 40% increase from version 25.0. The expanded contributor base of 60...
How to Build a Sentiment Analysis Application with ChatGPT and Druid
Leveraging ChatGPT for sentiment analysis, when combined with Apache Druid, offers results from large data volumes. This integration is easily achievable, revealing valuable insights and trends for businesses...
In this blog, we will compare Snowflake and Druid. It is important to note that reporting data warehouses and real-time analytics databases are different domains. Choosing the right tool for your specific requirements...
Learn how to achieve sub-second responses with Apache Druid
Learn how to achieve sub-second responses with Apache Druid. This article is an in-depth look at how Druid resolves queries and describes data modeling techniques that improve performance.
Apache Druid uses load rules to manage the ageing of segments from one historical tier to another and finally to purge old segments from the cluster. In this article, we’ll show what happens when you make...
Real-Time Analytics: Building Blocks and Architecture
This blog identifies the key technical considerations for real-time analytics. It answers what is the right data architecture and why. It spotlights the technologies used at Confluent, Reddit, Target and 1000s...
What’s new in Imply Polaris – Our Real-Time Analytics DBaaS
This blog explains some of the new features, functionality and connectivity added to Imply Polaris over the last two months. We've expanded ingestion capabilities, simplified operations and increased reliability...
Wow, that was easy – Up and running with Apache Druid
The objective of this blog is to provide a step-by-step guide on setting up Druid locally, including the use of SQL ingestion for importing data and executing analytical queries.
Tales at Scale Podcast Kicks off with the Apache Druid Origin Story
Tales at Scale cracks open the world of analytics projects and shares stories from developers and engineers who are building analytics applications or working within the real-time data space. One of the key...
Real-time Analytics Database uses partitioning and pruning to achieve its legendary performance
Apache Druid uses partitioning (splitting data) and pruning (selecting subset of data) to achieve its legendary performance. Learn how to use the CLUSTERED BY clause during ingestion for performance and high...
Easily embed analytics into your own apps with Imply’s DBaaS
This blog explains how developers can leverage Imply Polaris to embed robust visualization options directly into their own applications without them having to build a UI. This is super important because consuming...
Building an Event Analytics Pipeline with Confluent Cloud and Imply’s real time DBaaS, Polaris
Learn how to set up a pipeline that generates a simulated clickstream event stream and sends it to Confluent Cloud, processes the raw clickstream data using managed ksqlDB in Confluent Cloud, delivers the processed...
We are excited to announce the availability of Imply Polaris in Europe, specifically in AWS eu-central-1 region based in Frankfurt. Since its launch in March 2022, Imply Polaris, the fully managed Database-as-a-Service...
Should You Build or Buy Security Analytics for SecOps?
When should you build—or buy—a security analytics platform for your environment? Here are some common considerations—and how Apache Druid is the ideal foundation for any in-house security solution.
Combating financial fraud and money laundering at scale with Apache Druid
Learn how Apache Druid enables financial services firms and FinTech companies to get immediate insights from petabytes-plus data volumes for anti-fraud and anti-money laundering compliance.
This is a what's new to Imply in Dec 2022. We’ve added two new features to Imply Polaris to make it easier for your end users to take advantage of real-time insights.
Imply Pivot delivers the final mile for modern analytics applications
This blog is focused on how Imply Pivot delivers the final mile for building an anlaytics app. It showcases two customer examples - Twitch and ironsource.
For decades, analytics has been defined by the standard reporting and BI workflow, supported by the data warehouse. Now, 1000s of companies are realizing an expansion of analytics beyond reporting, which requires...
Apache Druid is at the heart of Imply. We’re an open source business, and that’s why we’re committed to making Druid the best open source database for modern analytics applications
When it comes to modern data analytics applications, speed is of the utmost importance. In this blog we discuss two approximation algorithms which can be used to greatly enhance speed with only a slight reduction...
The next chapter for Imply Polaris: celebrating 250+ accounts, continued innovation
Today we announced the next iteration of Imply Polaris, the fully managed Database-as-a-Service that helps you build modern analytics applications faster, cheaper, and with less effort. Since its launch in...
We obviously talk a lot about #ApacheDruid on here. But what are folks actually building with Druid? What is a modern analytics application, exactly? Let's find out
Elasticity is important, but beware the database that can only save you money when your application is not in use. The best solution will have excellent price-performance under all conditions.
Druid 0.23 – Features And Capabilities For Advanced Scenarios
Many of Druid’s improvements focus on building a solid foundation, including making the system more stable, easier to use, faster to scale, and better integrated with the rest of the data ecosystem. But for...
Apache Druid 0.23.0 contains over 450 updates, including new features, major performance enhancements, bug fixes, and major documentation improvements.
Imply Polaris is a fully managed database-as-a-service for building realtime analytics applications. John is the tech lead for the Polaris UI, known internally as the Unified App. It began with a profound question:...
There is a new category within data analytics emerging which is not centered in the world of reports and dashboards (the purview of data analysts and data scientists), but instead centered in the world of applications...
We are in the early stages of a stream revolution, as developers build modern transactional and analytic applications that use real-time data continuously delivered.
Developers and architects must look beyond query performance to understand the operational realities of growing and managing a high performance database and if it will consume their valuable time.
Building high performance logging analytics with Polaris and Logstash
When you think of querying with Apache Druid, you probably imagine queries over massive data sets that run in less than a second. This blog is about some of the things we did as a team to discover the user...
Horizontal scaling is the key to performance at scale, which is why every database claims this. You should investigate, though, to see how much effort it takes, especially compared to Apache Druid.
When you think of querying with Apache Druid, you probably imagine queries over massive data sets that run in less than a second. This blog is about some of the things we did as a team to discover the user...
Building Analytics for External Users is a Whole Different Animal
Analytics aren’t just for internal stakeholders anymore. If you’re building an analytics application for customers, then you’re probably wondering…what’s the right database backend?
After over 30 years of working with data analytics, we’ve been witness (and sometimes participant) to three major shifts in how we find insights from data - and now we’re looking at the fourth.
Every year industry pundits predict data and analytics becoming more valuable the following year. But this doesn’t take a crystal ball to predict. There’s instead something much more interesting happening...
Today, I'm prepared to share our progress on this effort and some of our plans for the future. But before diving further into that, let's take a closer look at how Druid's core query engine executes queries,...
Product Update: SSO, Cluster level authorization, OAuth 2.0 and more security features
When you think of querying with Apache Druid, you probably imagine queries over massive data sets that run in less than a second. This blog is about some of the things we did as a team to discover the user...
When you think of querying with Apache Druid, you probably imagine queries over massive data sets that run in less than a second. This blog is about some of the things we did as a team to discover the user...
Druid Nails Cost Efficiency Challenge Against ClickHouse & Rockset
To make a long story short, we were pleased to confirm that Druid is 2 times faster than ClickHouse and 8 times faster than Rockset with fewer hardware resources!.
Unveiling Project Shapeshift Nov. 9th at Druid Summit 2021
There is a new category within data analytics emerging which is not centered in the world of reports and dashboards (the purview of data analysts and data scientists), but instead centered in the world of applications...
How we made long-running queries work in Apache Druid
When you think of querying with Apache Druid, you probably imagine queries over massive data sets that run in less than a second. This blog is about some of the things we did as a team to discover the user...