Combating fraud at Ibotta with Imply

Sep 09, 2020
Jaylyn Stoesz, Ibotta

Presenting: the Fraud Problem

For years, fraud was primarily a game of strategy. Fraudsters sought to disguise their true intentions, and fraud prevention was an art of detection. Today, fraud is still a game of wits but it has also evolved into a game of speed and volume. The advancement of technology and explosion of e-commerce has had a compounding effect. No longer are fraudsters shackled by the need to physically steal a credit card and visit a store or meticulously forge a check they bring to a bank. In the digital realm they can easily disguise themselves, move faster and exist in several places at once.

Conversely, for fraud prevention teams, these advancements and the nature of online transactions means the window for detecting and stopping fraud has shrunk to sub-seconds. It isn’t enough to see through the disguise, you have to see through it in time.

For fraud prevention teams, the window for detecting and stopping
fraud has shrunk to sub-seconds.

Ibotta, a free cash back rewards platform, is no exception to this phenomenon. As the success of the business and surface area of our system grow, the introduction of new and compelling features in the app also create space for bad actors to find holes in our armor. But as fraudsters have become more sophisticated, so have we. Our commitment to the integrity of our system has led to the creation of a best-in-class fraud prevention analytics program known internally as Cyberfraud Intelligence & Analytics (C.I.A. – because obviously).

To address the element of time, Ibotta’s fraud prevention strategy is multifaceted. The fact is, you can only combat automation with automation, and so we rely on a combination of 3rd party vendors and home-grown systems to make decisions about fraud in real-time. Those systems work around the clock to keep both our end users, whom we call our Savers, and our Brand and Retail partners safe. But fraud is constantly evolving. It is a moving target and inevitably fraudsters find a way to slip through. When that happens we turn to our on-call analysts and investigators and this is where our new partnership with Imply has significantly enhanced our capabilities.

Using the unique and highly specialized tools that the Imply team has built into their product, we have already delivered remarkable results that are bolstering our resilience against fraud; moreover, we have successfully introduced and clearly proven the value of real-time analytics as a paradigm to the larger organization.

Challenges with our previous state

For those who have experienced a fraud on-call shift, you know initial detection is key, but equally important is the ability to quickly dissect and address the problem to minimize losses. This means access to real-time data is paramount.

Architecturally, Ibotta has walked a path familiar to many modern applications: we started with a monolith, and over time grew into a network of carefully orchestrated, message-driven microservices, facilitating greater resiliency, responsiveness, elasticity, and maintainability (these characteristics, with their powers combined, make up the Reactive Architecture paradigm). As a result, we have achieved a robust and growing ecosystem powered by event data.

That event-driven architecture gives our applications the ability to respond to changes in the environment in real-time, and it powers our fraud prevention services. Prior to our implementation of Imply, our analysts did not yet have the ability to unlock that data until hours later due to the mechanics of the pipeline into our data lake. And without a platform specialized for ingesting and exposing real-time data to analysts, our on-call team faced several high-impact roadblocks:

Dispersed Data
Each of our 3rd party vendors includes their own real-time portal to review transactions and other flagged events. In isolation, the data provided by each vendor tells a powerful but incomplete story and analysts lose valuable time with each portal they had to visit.

Obsolete Dashboards
Visualization is a powerful ally to an analyst looking to quickly understand the latest fraud trends. But fraud never stands still. The tools we had for visualizing our fraud landscape were ill-equipped to ingest real-time data and weren’t agile enough for the pace of change. Our classic BI dashboards would too quickly become obsolete as fraud tactics shifted.

Slow Queries
In order to have a holistic view of our ecosystem and successfully monitor for fraud or other anomalies, we needed to be able to quickly query and visualize very large datasets. Our existing analytics stack had served us well for historical reporting and batch jobs but wasn’t designed for investigative analytics, where the issues are time-critical and response times are key to minimizing losses.

Technical Barriers
Any options within our existing infrastructure for accessing real-time data required learning to use a custom query language for the platform. The technical barriers meant analysts would spend their time fighting with syntax and optimization, rather than doing what they do best: identifying patterns and driving value with our data.
As we entered 2020, we knew our ecosystem and event architecture had reached a level of maturity that would allow us to resolve these pain points, not only for fraud but for use cases across the company.

As we entered 2020, we knew our ecosystem and event architecture had reached a level of maturity that would allow us to resolve these pain points, not only for fraud but for use cases across the company.

Evaluating and choosing Imply

Before selecting Imply, Ibotta evaluated several alternatives spanning categories such as log management, cloud monitoring, distributed search, and cloud BI. As with most things in life, there was no silver bullet – each one included the capability to access our event data in real-time, albeit through very different implementations with both assets and drawbacks.

After careful consideration, we found Imply to be clearly the most robust solution out of all of the platforms we were considering, that would allow us to meet three overarching business goals: supporting rapid incident response, building trust with our Savers and partners through proactive fraud prevention, and enabling more of our team to easily make use of our data.

This image has an empty alt attribute; its file name is 1599594036-image3.png

Moreover, Imply met key specs around things like maintainability, workflows, cost, and security:

  • Managed cloud offering reduces maintenance time and risk
  • Full cluster transparency, monitoring, and alerting with Imply Clarity
  • Highly configurable and therefore extensible for a broad set of potential use cases
  • SQL support as well as drag-and-drop functionality
  • “Everything is clickable” Imply Pivot interface with robust, real-time visualizations
  • Optimized for numerical aggregations rather than text analysis or search functions
  • Cost-effective at the scale we expect for our roadmap
  • Role-based access at all levels, including individual aggregates and fields that may contain sensitive user or vendor data
  • Tools for masking and removing data in compliance with CCPA regulations

Filling in the gaps with a three-tier architecture

At Ibotta we separate our use cases into three storage layers: a data lake, data warehouse, and data river. Imply is now the foundation of our data river and serves as a key component in a broader analytical architecture at Ibotta, called Data Access in Real-Time (DART – anyone else a Stranger Things fan?). Various services within our system emit events, which we collect with an Event Observer implementation and pass through a series of Kinesis Streams and transformative AWS Lambda Functions. The results are then fanned out to Imply and other specialized consumers, which we use for custom anomaly detection and alerting workflows.

This image has an empty alt attribute; its file name is 1599594331-image4.png

With the implementation of the data river, we have filled a major gap in our data ecosystem which up until now was preventing us from effectively conducting time-critical analytics. The data river runs in parallel with our existing pipelines to our data lake and warehousing solutions, but is completely decoupled, and designed to be extremely flexible. They are fed from the same source of truth but operate separately, with built-in resiliency to changes in one system or the other. This flexibility is particularly important for fraud data, as it allows us to limit sensitive data to the appropriate engineering teams as needed to comply with privacy rules.

The data river runs in parallel with our existing pipelines to our data
lake and warehousing solutions, but is completely decoupled.

Combating fraud with Imply

With the DART architecture in place, the fraud team started to experience the benefits of Imply immediately. The previously mentioned roadblocks disintegrated. Now, for the first time, our analysts have immediate access to the same data our applications have been capitalizing on. They can see fraud as it’s happening.

In Imply, slow queries and syntax struggles have been replaced by Pivot’s Data Cubes offering slice and dice functionality with sub-second response times. Instead of obsolete reports and dispersed data, we now have a highly interactive real-time dashboard that incorporates both internal customer interaction events and data from each of our vendors. With this powerful tool, the team is armed with a holistic view of both fraud and our application ecosystem.

All of this is empowering our on-call team like never before, resulting in very tangible time and thus cost savings.

This image has an empty alt attribute; its file name is 1599594414-image1.png
  • Pivot’s dashboards have made it much easier to isolate new fraud trends and identify their scope. By having all our data in one location and updated in real-time, suspicious patterns jump off the page with new clarity.
  • Once a trend is discovered, the agility of Pivot’s visualizations and Data Cubes substantially shortens investigations, and the time needed to pinpoint the source of the spike or trend. What may have taken hours previously (especially with the inherent latency of our data lake pipeline) now takes only minutes.
  • By swiftly spotting trends and better understanding their source and scope, the on-call team can take action quickly and with more confidence. Reducing the interval between fraud incident awareness and mitigation is crucial to our business in many ways, more of which are emerging as we expand our use of real-time data. In addition to the obvious savings from reducing the window in which a fraudster is active on our platform, it also helps us protect our relationships with our clients by instilling trust, with our payment networks by proactively reducing disputes, and with our Savers by protecting their accounts.
  • Once mitigating action is taken we can track the efficacy in real-time to confirm the issue has been resolved without negatively impacting our legitimate users.
  • Finally, as fraud patterns shift or new data becomes available, the fraud team can easily update existing dashboards or build new ones from scratch without needing to engage an engineer. Since development is quick and GUI-based, the time to value has been greatly accelerated, creating substantial cost savings in both engineering time and loss prevention after an attack.

Designing for rapid response

With each new technology we integrate into our system and workflows, we grow and mature as an engineering organization. They force us to rethink old assumptions and develop new patterns. Imply has been no different. From the completed implementation of our first project we have come away with many valuable pro-tips about ways to shift mindsets from traditional analytics to make the best use of a real-time system. But at the end of the day, it all really boils down to this: focus on the experience of your stakeholders.

It all really boils down to this:
focus on the experience of your stakeholders.

The whole point of a data river is to make the information within it available and actionable as fast as possible. This means that it should take very little effort for end users – who may or may not have the technical know-how to execute complex SQL queries or build reports from scratch – to digest the data in front of them.

As system designers, then, it’s our responsibility to remove complexity upfront. We need to narrow our focus to their task at hand when modeling how to format and aggregate incoming data, so that it’s highly optimized in terms of speed, completeness, and relevance to what the end user is trying to accomplish. In other words: congratulations! You are now a UX designer (don’t panic if you live in the backend – it’s fun, we promise).

Now, this is not to say that reusability and consistency with the rest of the organization isn’t important. It is, for all kinds of reasons, not least of which is the cost of resources needed to store, process, and analyze high-volume datasets. But the nature of this particular flavor of analytics – especially in high-risk and time-sensitive domains like fraud – means that in this case, balancing ease-of-use with cost optimization and other organizational practices becomes mission-critical.

So, to design a data river which minimizes your stakeholders’ cognitive load, we suggest asking questions like these during the data modeling process:

  • What is the right amount and type of data needed for users to accomplish at least most of their goal in one place, rather than context-switching between multiple tools?
  • What information is needed to quickly identify patterns across windowed data, rather than long-term or lifetime trends like we’d look at in a data lake? Do any fields need to be renamed or reformatted to fit the operational context of the end user?
  • What fact data needs to be appended to real-time events in order to give context to the human users looking at the dashboard? Is it point-in-time or current-state? What could happen if it goes stale?
  • What is the investigative workflow for this use case? What common fields need to be present across data sources for analysts to be able to pivot and drill down effectively?
  • How do you structure sensitive user and vendor data in a way that gives your team the tools they need to do their work, while also protecting user privacy and contractual confidentiality agreements?
  • Are any of the events closely related, either structurally or contextually? If so, should they be unioned or joined into a single result set, versus overlaid or analyzed side-by-side?

Data lakes and warehouses exist to provide broad accessibility to the data ecosystem for a wide set of use cases, usually at the cost of speed and technical barriers to entry. But by taking these questions under consideration when we’re building a data river, we can fine-tune the tool to work extremely well for specific use cases where the goal is enabling rapid response.

Imply and Ibotta’s Core Values

While fraud prevention was the impetus for investing in Imply, the benefits extend far beyond it. At Ibotta, one of our Core Values is that “a good idea can come from anywhere.” We firmly believe that our most valuable assets are the creativity and vision of our team. Our partnership with Imply supports this value by giving more of our people more access to our data, empowering them to innovate, iterate, and further our mission to “Make every purchase rewarding.

Due to the highly technical nature of real-time data systems, many companies rely on a small set of skilled and specialized technicians to work with data and provide answers to the business. But that small set of specialists does not scale to a large user base, especially when organizations are trying to push decision-making down to front-line business users who need to react quickly as events are unfolding.

Instead, Imply is helping us lower the technical barriers to entry and enable need-to-know employees without an engineering or data science background to add value to the data in a way that makes sense to them, and is unique to their area of expertise. Democratizing our data has made it available to a larger community of team members to leverage for improving the business.

This empowerment is allowing us to expand our real-time use cases beyond fraud detection into several business domains, including:

  • Ad ops processes
  • Campaign pacing and budget monitoring
  • Saver rewards and receipt processing
  • Product analytics and feature testing with clickstream analysis

With that said, we are already immensely pleased with our experience and results. We look forward to opening up the system to a broader user base and watching the inevitable transformation as teams across the company gain access to real-time data.


Build yourself a data river and combat fraud with Imply.

Other blogs you might find interesting

No records found...
Feb 21, 2024

What’s new in Imply Polaris – January 2024

At Imply, we're excited to share the latest enhancements in Imply Polaris, our real-time analytics Database-as-a-Service (DBaaS) powered by Apache Druid®. Our commitment to refining your experience with Polaris...

Learn More
Feb 21, 2024

Introducing Apache Druid 29.0

Apache Druid® is an open-source distributed database designed for real-time analytics at scale. We are excited to announce the release of Apache Druid 29.0. This release contains over 350 commits & 67 contributors.

Learn More
Feb 14, 2024

Apache Druid vs. ClickHouse

If your project needs a real-time analytics database that provides subsecond performance at scale you should consider both Apache Druid and ClickHouse. Find out how to make an informed choice.

Learn More
Jan 23, 2024

Enhancing Data Security with Role-Based Access Control in Druid and Imply

Managing user access to relevant data is a crucial aspect of any data platform. In a typical Role Based Access Control (RBAC) setup, users are assigned roles that determine their access to relevant data. We...

Learn More
Jan 16, 2024

Comparing Data Formats for Analytics: Parquet, Iceberg, and Druid Segments

In this blog, I will give you a detailed overview of each choice. We will cover key features, benefits, defining characteristics, and provide a table comparing the file formats. Dive in and explore the characteristics...

Learn More
Jan 12, 2024

Scheduling batch ingestion with Apache Airflow

This guide is your map to navigating the confluence of Airflow and Druid for smooth batch ingestion. We'll get you started by showing you how to setup Airflow and the Druid Provider and use it to ingest some...

Learn More
Dec 29, 2023

A Buyer’s Guide to OLAP Tools

How do OLAP databases work—and which one is right for you? Read this blog post to learn more about which OLAP solutions are best for different use cases.

Learn More
Dec 26, 2023

What is IoT Analytics?

Because it deals with fast-moving, real-time data, IoT analytics is uniquely challenging. Learn how to overcome these challenges and how to extract (and act on) valuable insights from IoT data.

Learn More
Dec 19, 2023

OLTP and OLAP Databases: How They Differ and Where to Use Them

Learn about the differences between analytical and transactional databases—their strengths and weaknesses, what they’re used for, and which option to choose for your own use case.

Learn More
Dec 15, 2023

Query from deep storage: Introducing a new performance tier in Apache Druid

Now, Druid offers a simpler, cost-effective solution with its new feature, Query from Deep Storage. This feature enables you to query Druid’s deep storage layer directly without having to preload all of your...

Learn More
Dec 15, 2023

How KakaoBank Uses Imply for Financial Analysis

As a mobile-first digital platform, KakaoBank accumulates a substantial amount of data. Therefore, analysts need a solution that can effectively analyze and pre-process large quantities of data, visualize the...

Learn More
Dec 14, 2023

Joins, Multi-Stage Queries, and More: Relive the Excitement of Druid Summit 2023

Druid Summit kicked off its fourth year as a global gathering of minds passionate about real-time analytics and the power of Apache Druid. This year’s event revealed a common theme: the growing significance...

Learn More
Dec 13, 2023

An Introduction to Online Analytical Processing (OLAP)

Online analytical processing (OLAP) analyzes data at scale—and provides actionable insights to organizations. Learn about how OLAP works, what a data cube is, and which OLAP product to use.

Learn More
Dec 12, 2023

Real-Time Data: What it is, Why it Matters, and More

Real-time data travels directly from the source to end users, so that it can be processed and acted on instantly. Learn all about the challenges, benefits, and best practices for real-time data.

Learn More
Dec 08, 2023

Druid vs Pinot: Choosing the best database for Real-Time Analytics

Do you want fast analytics, with subsecond queries, high concurrency, and combination of streams and batch data? If so, you want real-time analytics, and you probably want to consider the two Apache Software...

Learn More
Dec 07, 2023

What’s new in Imply Polaris – October and November 2023

At Imply, our commitment to continually improving your experience with Imply Polaris—our real-time analytics Database-as-a-Service (DBaaS) powered by Apache Druid®—is evident in recent developments. Over...

Learn More
Nov 15, 2023

Introducing Apache Druid 28.0.0

Apache Druid 28.0, an open-source database for real-time analytics, introduces Async queries, UNION ALL support, SQL WINDOW functions, enhanced ingestion features, including multi-Kafka topic support, and...

Learn More
Oct 18, 2023

Migrating Data From S3 To Apache Druid

This blog covers the rationale, advantages, and step-by-step process for data transfer from AWS s3 to Apache Druid for faster real-time analytics and querying.

Learn More
Oct 12, 2023

What’s new in Imply Polaris, our real-time analytics DBaaS  – September 2023

Every week, we add new features and capabilities to Imply Polaris. Throughout September, we've focused on enhancing your experience as you explore trials, navigate data integration, oversee data management,...

Learn More
Sep 27, 2023

Introducing incremental encoding for Apache Druid dictionary encoded columns

In this blog post we deep dive on a recent engineering effort: incremental encoding of STRING columns. In preliminary testing, it has shown to be quite promising at significantly reducing the size of segment...

Learn More
Sep 21, 2023

Migrate Analytics Data from MongoDB to Apache Druid

This blog presents a concise guide on migrating data from MongoDB to Druid. It includes Python scripts to extract data from MongoDB, save it as CSV, and then ingest it into Druid. It also touches on maintaining...

Learn More
Sep 21, 2023

How Druid Facilitates Real-Time Analytics for Mass Transit

Mass transit plays a key role in reimagining life in a warmer, more densely populated world. Learn how Apache Druid helps power data and analytics for mass transit.

Learn More
Sep 19, 2023

Migrate Analytics Data from Snowflake to Apache Druid

This blog outlines the steps needed to migrate data from Snowflake to Apache Druid, a platform designed for high-performance analytical queries. The article covers the migration process, including Python scripts...

Learn More
Sep 15, 2023

Apache Kafka, Flink, and Druid: Open Source Essentials for Real-Time Data Applications

Apache Kafka, Flink, and Druid, when used together, create a real-time data architecture that eliminates all these wait states. In this blog post, we’ll explore how the combination of these tools enables...

Learn More
Sep 11, 2023

Visualizing Data in Apache Druid with the Plotly Python Library

In today's data-driven world, making sense of vast datasets can be a daunting task. Visualizing this data can transform complicated patterns into actionable insights. This blog delves into the utilization of...

Learn More
Sep 05, 2023

Bringing Real-Time Data to Solar Power with Apache Druid

In a rapidly warming world, solar power is critical for decarbonization. Learn how Apache Druid empowers a solar equipment manufacturer to provide real-time data to users, from utility plant operators to homeowners

Learn More
Sep 05, 2023

When to Build (Versus Buy) an Observability Application

Observability is the key to software reliability. Here’s how to decide whether to build or buy your own solution—and why Apache Druid is a popular database for real-time observability

Learn More
Aug 29, 2023

How Innowatts Simplifies Utility Management with Apache Druid

Data is a key driver of progress and innovation in all aspects of our society and economy. By bringing digital data to physical hardware, the Internet of Things (IoT) bridges the gap between the online and...

Learn More
Aug 14, 2023

Three Ways to Use Apache Druid for Machine Learning Workflows

An excellent addition to any machine learning environment, Apache Druid® can facilitate analytics, streamline monitoring, and add real-time data to operations and training

Learn More
Aug 11, 2023

Introducing Apache Druid 27.0.0

Apache Druid® is an open-source distributed database designed for real-time analytics at scale. Apache Druid 27.0 contains over 350 commits & 46 contributors. This release's focus is on stability and scaling...

Learn More
Aug 10, 2023

Unleashing Real-Time Analytics in APJ: Introducing Imply Polaris on AWS AP-South-1

Imply, the company founded by the original creators of Apache Druid, has exciting news for developers in India seeking to build real-time analytics applications. Introducing Imply Polaris, a powerful database-as-a-Service...

Learn More
Aug 03, 2023

Embedding Visualizations using React and Express

In this guide, we will walk you through creating a very simple web app that shows a different embedded chart for each user selected from a drop-down. While this example is simple it highlights the possibilities...

Learn More
Jul 25, 2023

Apache Druid: Making 1000+ QPS for Analytics Look Easy

This 2-part blog post explores key technical considerations to support high QPS for analytics and the strengths of Apache Druid

Learn More
Jul 25, 2023

Things to Consider When Scaling Analytics for High QPS

This 2-part blog post explores key technical considerations to support high QPS for analytics and the strengths of Apache Druid

Learn More
Jul 20, 2023

Automate Streaming Data Ingestion with Kafka and Druid

In this blog post, we explore the integration of Kafka and Druid for data stream management and analysis, emphasizing automatic topic detection and ingestion. We delve into the creation of 'Ingestion Spec',...

Learn More
Jul 12, 2023

Schema Auto-Discovery with Apache Druid

This guide explores configuring Apache Druid to receive Kafka streaming messages. To demonstrate Druid's game-changing automatic schema discovery. Using a real-world scenario where data changes are handled...

Learn More
Jul 11, 2023

What’s new in Imply Polaris – Q2 2023

Imply Polaris, our ever-evolving Database-as-a-Service, recently focused on global expansion, enhanced security, and improved data handling and visualization. This fully managed cloud service, based on Apache...

Learn More
Jun 06, 2023

Introducing hands-on developer tutorials for Apache Druid

The objective of this blog is to introduce the new set of interactive tutorials focused on the Druid API fundamentals. These tutorials are available as Jupyter Notebooks and can be downloaded as a Docker container.

Learn More
Jun 01, 2023

Introducing Schema Auto-Discovery in Apache Druid

In this blog article I’ll unpack schema auto-discovery, a new feature now available in Druid 26.0, that enables Druid to automatically discover data fields and data types and update tables to match changing...

Learn More
May 30, 2023

Exploring Unnest in Druid

Druid now has a new function, Unnest. Unnest explodes an array into individual elements. This blog contains design methodology and examples for this new Unnest function both from native and SQL binding perspectives.

Learn More
May 28, 2023

What’s new in Imply Polaris – Our Real-Time Analytics DBaaS

Every week we add new features and capabilities to Imply Polaris. This month, we’ve expanded security capabilities, added new query functionality, and made it easier to monitor your service with your preferred...

Learn More
May 24, 2023

Introducing Apache Druid 26.0

Apache Druid® 26.0, an open-source distributed database for real-time analytics, has seen significant improvements with 411 new commits, a 40% increase from version 25.0. The expanded contributor base of 60...

Learn More
May 22, 2023

ACID and Apache Druid

ACID and Druid, an interesting dive into some of the Druid capabilities in the light of ACID compliance

Learn More
May 21, 2023

How to Build a Sentiment Analysis Application with ChatGPT and Druid

Leveraging ChatGPT for sentiment analysis, when combined with Apache Druid, offers results from large data volumes. This integration is easily achievable, revealing valuable insights and trends for businesses...

Learn More
May 21, 2023

Snowflake and Apache Druid

In this blog, we will compare Snowflake and Druid. It is important to note that reporting data warehouses and real-time analytics databases are different domains. Choosing the right tool for your specific requirements...

Learn More
May 20, 2023

Learn how to achieve sub-second responses with Apache Druid

Learn how to achieve sub-second responses with Apache Druid. This article is an in-depth look at how Druid resolves queries and describes data modeling techniques that improve performance.

Learn More
May 19, 2023

Apache Druid – Recovering Dropped Segments

Apache Druid uses load rules to manage the ageing of segments from one historical tier to another and finally to purge old segments from the cluster. In this article, we’ll show what happens when you make...

Learn More
May 18, 2023

Real-Time Analytics: Building Blocks and Architecture

This blog identifies the key technical considerations for real-time analytics. It answers what is the right data architecture and why. It spotlights the technologies used at Confluent, Reddit, Target and 1000s...

Learn More
May 17, 2023

Transactions Come and Go, but Events are Forever

For decades, analytics has focused on Transactions. While Transactions are still important, the future of analytics is understanding Events.

Learn More
May 16, 2023

What’s new in Imply Polaris – Our Real-Time Analytics DBaaS

This blog explains some of the new features, functionality and connectivity added to Imply Polaris over the last two months. We've expanded ingestion capabilities, simplified operations and increased reliability...

Learn More
May 15, 2023

Elasticsearch and Druid

This blog will help you understand what Elasticsearch and Druid do well and will help you decide whether you need one or both to reach your goals

Learn More
May 14, 2023

Wow, that was easy – Up and running with Apache Druid

The objective of this blog is to provide a step-by-step guide on setting up Druid locally, including the use of SQL ingestion for importing data and executing analytical queries.

Learn More
May 13, 2023

Top 7 Questions about Kafka and Druid

Read on to learn more about common questions and answers about using Kafka with Druid.

Learn More
May 12, 2023

Tales at Scale Podcast Kicks off with the Apache Druid Origin Story

Tales at Scale cracks open the world of analytics projects and shares stories from developers and engineers who are building analytics applications or working within the real-time data space. One of the key...

Learn More
May 11, 2023

Real-time Analytics Database uses partitioning and pruning to achieve its legendary performance

Apache Druid uses partitioning (splitting data) and pruning (selecting subset of data) to achieve its legendary performance. Learn how to use the CLUSTERED BY clause during ingestion for performance and high...

Learn More
May 10, 2023

Easily embed analytics into your own apps with Imply’s DBaaS

This blog explains how developers can leverage Imply Polaris to embed robust visualization options directly into their own applications without them having to build a UI. This is super important because consuming...

Learn More
May 09, 2023

Building an Event Analytics Pipeline with Confluent Cloud and Imply’s real time DBaaS, Polaris

Learn how to set up a pipeline that generates a simulated clickstream event stream and sends it to Confluent Cloud, processes the raw clickstream data using managed ksqlDB in Confluent Cloud, delivers the processed...

Learn More
May 08, 2023

Real time DBaaS comes to Europe

We are excited to announce the availability of Imply Polaris in Europe, specifically in AWS eu-central-1 region based in Frankfurt. Since its launch in March 2022, Imply Polaris, the fully managed Database-as-a-Service...

Learn More
May 07, 2023

Stream big, think bigger—Analyze streaming data at scale in 2023

Imply is predicting the next "big thing" in 2023 will be analyzing streaming data in real time (and Druid is built for just that!)

Learn More
May 07, 2023

Should You Build or Buy Security Analytics for SecOps?

When should you build—or buy—a security analytics platform for your environment? Here are some common considerations—and how Apache Druid is the ideal foundation for any in-house security solution.

Learn More
May 05, 2023

Introducing Apache Druid 25.0

Apache Druid 25.0 contains over 293 updates from over 56 contributors.

Learn More
May 03, 2023

Druid and SQL syntax

This is a technical blog, which summarises the process of extending the Druid's SQL grammar for ingestion and delves into the nitty gritty of Calcite.

Learn More
May 02, 2023

Native support for semi-structured data in Apache Druid

Describes a new feature- ingest complex data as is into Druid- massive improvement in developer productivity

Learn More
May 01, 2023

Real-Time Analytics with Imply Polaris: From Setup to Visualization

Imply Polaris offers reduced operational overhead and elastic scaling for efficient real-time analytics that helps you unlock your data's potential.

Learn More
May 01, 2023

Datanami Award

Apache Druid won Datanami's 2022 Readers’ and Editors’ Choice Awards for Reader's Choice "Best Data and AI Product or Technology: Analytics Database".

Learn More
Apr 30, 2023

Alerting and Security Features in Polaris

Describes new features - alerts and some security features- and how Imply customers can leverage it

Learn More
Apr 29, 2023

Ingestion from Amazon Kinesis and S3 into Imply Polaris

Imply Polaris now supports data ingestion from Amazon Kinesis and Amazon S3

Learn More
Apr 27, 2023

Getting the Most Out of your Data

Ingesting data from one table to another is easy and fast in Imply Polaris!

Learn More
Apr 26, 2023

Combating financial fraud and money laundering at scale with Apache Druid

Learn how Apache Druid enables financial services firms and FinTech companies to get immediate insights from petabytes-plus data volumes for anti-fraud and anti-money laundering compliance.

Learn More
Apr 26, 2023

What’s new in Imply – December 2022

This is a what's new to Imply in Dec 2022. We’ve added two new features to Imply Polaris to make it easier for your end users to take advantage of real-time insights.

Learn More
Apr 25, 2023

What’s New in Imply Polaris – November 2022

This blog provides an overview for the new features, functionality, and connectivity to Imply Polaris for November 2022.

Learn More
Apr 24, 2023

Imply Pivot delivers the final mile for modern analytics applications

This blog is focused on how Imply Pivot delivers the final mile for building an anlaytics app. It showcases two customer examples - Twitch and ironsource.

Learn More
Apr 23, 2023

Why Analytics Need More than a Data Warehouse

For decades, analytics has been defined by the standard reporting and BI workflow, supported by the data warehouse. Now, 1000s of companies are realizing an expansion of analytics beyond reporting, which requires...

Learn More
Apr 21, 2023

Why Open Source Matters for Databases

Apache Druid is at the heart of Imply. We’re an open source business, and that’s why we’re committed to making Druid the best open source database for modern analytics applications

Learn More
Apr 20, 2023

Ingestion from Confluent Cloud and Kafka in Polaris

How to ingest data into Imply Polaris from Confluent Cloud and from Apache Kafka

Learn More
Apr 18, 2023

What Makes a Database Built for Streaming Data?

For an analytics app to handle real-time, streaming sources, it must be built for streaming data. Druid has 3 essential features for stream data.

Learn More
Oct 12, 2022

SQL-based Transformations and JSON Columns in Imply Polaris

You can easily do data transformations and manage JSON data with Imply Polaris, both using SQL.

Learn More
Oct 06, 2022

Approximate Distinct Counts in Imply Polaris

When it comes to modern data analytics applications, speed is of the utmost importance. In this blog we discuss two approximation algorithms which can be used to greatly enhance speed with only a slight reduction...

Learn More
Sep 20, 2022

The next chapter for Imply Polaris: celebrating 250+ accounts, continued innovation

Today we announced the next iteration of Imply Polaris, the fully managed Database-as-a-Service that helps you build modern analytics applications faster, cheaper, and with less effort. Since its launch in...

Learn More
Sep 20, 2022

Introducing Imply’s Total Value Guarantee for Apache Druid

Apache Druid 24.0 contains 450 updates and new features, major performance enhancements, bug fixes, and major documentation improvements

Learn More
Sep 16, 2022

Introducing Apache Druid 24.0

Apache Druid 24.0 contains 450 updates and new features, major performance enhancements, bug fixes, and major documentation improvements

Learn More
Aug 16, 2022

Using Imply Pivot with Druid to Deduplicate Timeseries Data

Imply Pivot offers multi step aggregations, which is valuable for timeseries data where measures are not evenly distributed in time.

Learn More
Jul 21, 2022

A Look Under the Surface at Polaris Security

We have taken a security-first approach in building the easiest real-time database for modern analytics applications.

Learn More
Jul 14, 2022

Upserts and Data Deduplication with Druid

A look at what can be done with Druid for upserts and data deduplication.

Learn More
Jul 01, 2022

What Developers Can Build with Apache Druid

We obviously talk a lot about #ApacheDruid on here. But what are folks actually building with Druid? What is a modern analytics application, exactly? Let's find out

Learn More
Jun 29, 2022

When Streaming Analytics… Isn’t

Nearly all databases are designed for batch processing, which leaves three options for stream analytics.

Learn More
Jun 29, 2022

Apache Druid vs. Snowflake

Elasticity is important, but beware the database that can only save you money when your application is not in use. The best solution will have excellent price-performance under all conditions.

Learn More
Jun 22, 2022

Druid 0.23 – Features And Capabilities For Advanced Scenarios

Many of Druid’s improvements focus on building a solid foundation, including making the system more stable, easier to use, faster to scale, and better integrated with the rest of the data ecosystem. But for...

Learn More
Jun 22, 2022

Introducing Apache Druid 0.23

Apache Druid 0.23.0 contains over 450 updates, including new features, major performance enhancements, bug fixes, and major documentation improvements.

Learn More
Jun 20, 2022

An Opinionated Guide to Component APIs

We have collected a number of guidelines for React component APIs that make components more predictable in terms of behavior and performance.

Learn More
Jun 10, 2022

Druid Architecture & Concepts

In a world full of databases, learn how Apache Druid makes real-time analytics apps a reality in this Whitepaper from Imply

Learn More
May 25, 2022

3 decisions that shaped the Polaris UI

Imply Polaris is a fully managed database-as-a-service for building realtime analytics applications. John is the tech lead for the Polaris UI, known internally as the Unified App. It began with a profound question:...

Learn More
May 19, 2022

How Imply Polaris takes a security-first approach

A primer for developers on security tools and controls available in Imply Polaris

Learn More
May 17, 2022

Imply Raises $100MM in Series D funding

There is a new category within data analytics emerging which is not centered in the world of reports and dashboards (the purview of data analysts and data scientists), but instead centered in the world of applications...

Learn More
May 11, 2022

Imply Named “Cool Database Vendor” by CRN

There can’t be one database good at everything. When it comes to real-time analytics, you need a database built for it.

Learn More
May 11, 2022

Living the Stream

We are in the early stages of a stream revolution, as developers build modern transactional and analytic applications that use real-time data continuously delivered.

Learn More
May 02, 2022

Migrating Data from ClickHouse to Imply Polaris

In this blog, we’ll review the simple steps to export data from ClickHouse in a format that is easy to ingest into Polaris.

Learn More
Apr 06, 2022

Java Keytool, TLS, and Zookeeper Security

Lean the basics of Public Key Infrastructure (PKI) as it relates to Druid and Zookeeper security.

Learn More
Apr 01, 2022

Building high performance logging analytics with Polaris and Logstash

When you think of querying with Apache Druid, you probably imagine queries over massive data sets that run in less than a second. This blog is about some of the things we did as a team to discover the user...

Learn More

Let us help with your analytics apps

Request a Demo