Community Spotlight: Pollfish survey insights, powered by Apache Druid
Oct 14, 2020
Peter Marshall
Pollfish, the “easiest and most affordable way to get real-time insights from real consumers”, delivers democratic, real-time insights with an innovative Apache Druid-powered pipeline that includes microservices leveraging an open-source Scala library for Apache Druid called Scruid. Anastasios Skarlatidis , Director of Data Engineering and Science at Pollfish, tells us more.
The Pollfish advanced data collection platform enables application developers to create mobile app and game surveys, reaching more than half-a-billion real consumers, helping global companies inform advertising, branding, market research, content, and product strategies with fresh and fast data.
“Whether understanding the time it will take to collect answers from their audience of interest, or breaking down results in real-time as respondents answer surveys, Druid delivers the high-performance time-series OLAP database we need to monitor, measure and explore data in real-time.”
Researchers extract and query statistical information on a plethora of dimensions, including income, gender, age distribution, country, state, city and geographical area over multiple time intervals with varying time granularities.
Real-time analytics dashboards show survey performance data: revenue, eCPM, funnel survey participation and more, live and direct from the stream.
The majority of data for analysis in this low-latency pipeline is passed through Apache Kafka, backed by a compute stack composed of Spark, Flink and Akka Streams. Micro-services are implemented mainly in Finatra / Finagle and provide RESTful and Thrift APIs. Cassandra and PostgreSQL live alongside Apache Druid and an HDFS-compatible data lake for raw data which is, for the most part, stored in Parquet and made accessible via Hive.
Enrichment processes (e.g., transformations, enrichments with demographic and geographic data, etc.) publish data to the Apache Kafka® stream, where Apache Druid acts a native sink powering Metabase and Looker for those ad-hoc queries, BI tasks and internal dashboards.
“Apache Druid accelerates and simplifies the process of exploring the data. On the one hand, you have a system that ingests real-time data and on the other hand, the same system, can directly answer any analytical query.”
Pollfish have built an inspirational example of the democratic, real-time data revolution.
Come into the spotlight! Share your Apache Druid story with the whole community, too. Email community@imply.io and we will get the ball rolling!
Other blogs you might find interesting
No records found...
Sep 06, 2024
Real-time analytics architecture with Imply Polaris on Microsoft Azure
This article provides an architectural overview of how Imply Polaris integrates with Microsoft Azure services to power real-time analytics applications.
Streamlining Time Series Analysis with Imply Polaris
We are excited to share the latest enhancements in Imply Polaris, introducing time series analysis to revolutionize your analytics capabilities across vast amounts of data in real time.
Transform your data management with upserts in Imply Polaris! Ensure data consistency and supercharge efficiency by seamlessly combining insert and update operations into one powerful action. Discover how Polaris’s...